Google

Translate blog

Visar inlägg med etikett istäckt. Visa alla inlägg
Visar inlägg med etikett istäckt. Visa alla inlägg

onsdag 28 september 2022

Fler bevis är framlagda på möjligt liv i havet på månen Enceladus

 


Enceladus är en av Saturnus månar. Den  har en ocean av vatten under sin tjocka isyta.

Ett team av forskare där bland annat Dr. Christopher Glein från Southwest Research Institutes ingår har framlagt nya bevis för en viktig byggsten för livsmöjligheter i havet under  Enceladus isyta. Genom datamodellering indikeras att Enceladus hav bör vara relativt rikt på upplöst fosfor. Fosfor är en viktig ingrediens för livet.

Glein är en ledande expert på utomjordisk oceanografi. Han är medförfattare till en ny artikel i Proceedings of the National Academy of Sciences där dessa antagna bevis beskrivs.

Rymdfarkosten Cassini som kretsade över månen 2005 upptäckte för första gången att Enceladus hade flytande vatten under sin yta då gejsrar av iskorn och vattenånga utbröt från sprickor i isen och analyserade prover från denna. 

"Vad vi har lärt oss är att gejsern innehöll nästan alla grundläggande ämnen för liv som vi känner det", sa Glein. "Medan det bioessentiella elementet fosfor ännu inte  identifierades direkt eller hittades i analysen av vattenångan upptäcktes det däremot nu genom ovan datamodell där team fann bevis för dess tillgänglighet i havet under månens isiga skorpa." 

En av de mest djupgående upptäckterna inom planetvetenskapen under de senaste 25 åren är att världar med hav under ett ytskikt av is är vanligt i vårt solsystem. Sådana världar inkluderar de isiga månarna över Saturnus, Jupiter, Uranus och Neptunus och då är i första hand Jupiters måne Europa, Saturnus måne Titan och Enceladus liksom mer avlägsna kroppar som dvärgplaneten Pluto som intressantast.

Världar som jorden däremot med flytande hav på sin yta måste ligga inom ett smalt avstånd från sin sol. Någon sådan värld finns inte utöver Jorden i vårt solsystem i dag, Eventuellt har Mars haft hav i perioder tidigare.  

Inre vattenhavsvärldar (under is) kan dock finnas över ett mycket bredare spektrum av avstånd från sin sol vilket kraftigt utökar antalet världar med livsformer som sannolikt kan existera i Vintergatan. "Strävan efter utomjordiskt liv i solsystemet har skiftat fokus eftersom vi nu i första hand letar efter byggstenarna för liv, inklusive organiska molekyler, ammoniak, svavelbärande föreningar samt den kemiska energi som behövs för att stödja liv," säger Glein. "Fosfor är intressant då det i tidigare teorier ansågs vara knappt i Enceladus hav vilket skulle dämpa utsikterna för liv där."

Fosfor i form av fosfater är avgörande för allt liv på jorden. Det är viktigt för skapandet av DNA och RNA, energibärande molekyler, cellmembran, ben och tänder hos människor och djur och även havets mikrobiom av plankton.

Teamets medlemmar utförde termodynamisk och kinetisk modellering som simulerar fosforns geokemi baserat på fynd från Cassini analys av gejsern på Enceladus. Under sin forskning utvecklade teamet den mest detaljerade geokemiska modellen hittills av hur havsbottenmineraler löses upp i Enceladus hav och förutspådde att fosfatmineraler skulle vara ovanligt lösliga där.

"Den underliggande geokemin har en elegant enkelhet som gör närvaron av upplöst fosfor oundviklig och når nivåer nära eller till och med högre än de i dagens hav på Jorden", säger Glein. "Vad det betyder för astrobiologi är att vi kan vara mer säkra än tidigare på att Enceladus hav kan ha liv."

Spännande tider väntar om vi får möjlighet att utforska detta hav någon gång i framtiden (min anm.).

Bild vikipedia på Saturnus största måne Enceladus i naturlig färg.  Bild tagen av farkosten Cassini 2017.

fredag 19 juni 2020

Partiklar mellan och i galaxerna är mindre istäckta än man tidigare ansett.


I universum är det på många platser  kallt och dammigt och gasfyllt. Molekylära moln från vilka stjärnor bildas innehållande gas (mest bestående av väte) och damm finns svävar omkring nya stjärnor vilkets material är grunden till nya planetsystem. Utöver det finns  nebulosor och mellan galaxerna små mängde av dammpartiklar. Några per kvadratmeter i tomrummet. 

Astrofysiker har länge förstått att ytorna på dessa damm- och gasmoln bestående av små molekylpartiklar första hand (små och större sten och gruskorn finns även) fungerar som platser för kemiska reaktioner som skapar ett brett spektrum av molekyler från vätgas till alkoholer av skilda slag. Kemikalier som är viktiga komponenter till sten och gasplaneter. De senaste decennierna har forskare antagit (inte vetat min anm.,) att dessa dammpartiklar är belagda med hundratals eller tusentals molekylskikt av is - inte bara fryst vatten utan också andra föreningar ex kolmonoxid, ammoniak och metan.

Nu har Alexey Potapov från Max Planck-institutet för astronomi och Friedrich-Schiller vid University of Jena, Tyskland med kollegor hittat bevis vid laboratorieexperiment att antagandet om tjockleken på detta islager troligen är fel. De gjorde upptäckten att tidigare forskning och teori antytt att vissa astrofysiska dammpartiklar kan vara mycket porösa och svampliknande i sin struktur och med mycket hög effektiv ytarea (mycket yta). Nya observationer antyder att mängden is för varje dammpartikel är beroende på om partikeln är mycket porös (en porös yta har fler ytor tänk på en dammtuss med alla dess prång) skulle den tillgängliga isen spridas ut i ett tunnare skikt på alla dessa ytor än vad som antagits tidigare och för en slät partikel med en mindre ytarea isen istället lägger sig i ett tjockare lager (här kan man tänka på ett gruskorn få sprickor och prång här). Tidigare antogs ett lager is på partiklarna av ungefär samma tjocklek runt om inte uppdelat beroende på ytor och porositet. 

Potapov antyder att det islager som bildas på vissa korn porösa sådana bara skulle vara en enda molekyl tjockt medan andra gruskornlika har tjockare islager. Denna uppskattning kommer från mätningar av ökningen av effektiv yta jämfört med en ickeslät yta. "Det är som att bre smör på en smörgås," säger Potapov. "Du får en tunnare men ett tjockare lager om brödskivan är plan och kompakt med  tät struktur," (till skillnad mot ett luftigt bröd med bucklig och hålig yta där du ska få smör in i alla håligheter det blir petgöra om man inte ser det som tidigare ett tjockt lager rätt över båda bröden ) När det gäller dammkorn existerar mycket av den ytan i de veckade hålen i det porösa materialet.

Detta resultat, tror forskarna, kan förändra mycket tänkande inom astrofysisk kemi. Möjligheten att kol- och silikatbaserade material av dammpartiklar påverkar  ytreaktioner vilket  antyder t att ett större antal molekyler kan bildas beroende på ytans och hastigheten för skedena  i olika reaktioner vilka då är  annorlunda än man tidigare trott.

 Några av de organiskt viktiga molekylerna som finns i planeter och kometer kan bildas på dessa ytor med mycket högre hastighet och effektivitet. Dessa kan inkludera vissa molekyler som tros delta i prebiotisk kemi, såsom formaldehyd  (en färglös gas) och ammoniumkarbonat (en slags salt). 

En ny kunskap som kan ge lite ny teoribildning av hur planeter bildas (min anm.).
Bild från vikimedia på carinanebulosan  vilken är en bra illustration på damm och gasmoln i universum. Mer om denna kan man läsa om här. 

fredag 3 augusti 2018

En av de intressantaste månarna är Europa men vi kan missa ev livsformer där även när vi söker efter det på plats.


Det kommer under 2020-talet att sändas en sond till en av de intressantaste platserna i vårt solsystem i sökandet efter liv. Jupiters istäckta måne Europa.

Is under vilket vatten uppvärmt av vulkanism finns och vilket kan ha en temperatur vilket gör att liv kan finnas där.

Knappast i högre form men enklare livsformer.

Prover i detta vatten är målet för den sond som kommer dit under nästa decennium om planerna håller. Det gäller då att ta prover på isen men även komma under isens täcke för provtagning.

Livsformer kan finnas bara några cm ner i vattnet men risken finns att man måste gå djupt ner för att finna det. Ner till botten då det kan finnas enbart där (om det finns) och kanske enbart på några platser. Det blir då ett lotteri eller slumpartat om vi finner det eller inte (om det finns).

Detta kan göra att det är slumpen som avgör om vi borrar och tar prover på rätt plats. Om inte missar vi det liv som kan finnas.

Det är därför möjligt att det liv som kan finnas inte hittas vid en undersökning på plats. Slump, tur och beräkningar av trolig plats är därför viktigt vid att bestämma var prover ska tas. Men likväl kan allt få det att bli fel plats på fel tidpunkt och vi därmed inte hittar det som söks och finns om det existerar.
Bilden är på månen Europa och dess istäckta ytan med alla dess issprickor.