Google

Translate blog

måndag 24 oktober 2022

Ljud hörs innan en stjärna exploderar som en supernova

 


En supernova är en exploderande eller en exploderad stjärna. Supernovorna hör till de våldsammaste händelserna i universum. För att en supernova ska ske måste stjärnan ha haft en viss storlek vår sol är för liten för att explodera som en supernova.

Astronomer från Liverpool John Moores University och University of Montpellier har utarbetat ett "tidigt varningssystem" ett varningssystem som visar när en massiv stjärna är på väg att avsluta sitt liv som en supernovaexplosion. En supernova närmare oss än 200 ljusår påverkar vårt solsystem.

Arbetet publicerades i Monthly Notices of the Royal Astronomical Society. I den här nya studien beskriver forskare att massiva stjärnor (vanligtvis mellan 8 och 20 solmassor) i den sista fasen av sin tillvaro  plötsligt kommer att bli cirka hundra gånger svagare i optiskt ljus under de sista månaderna innan de försvinner i en supernovaexplosion. Denna dimning orsakas av en plötslig ansamling av material runt stjärnan vilket döljer dess ljus.

En mycket bra förklaring på skillnaden mellan stjärnor som slutar sin tillvaro som supernova eller stjärnor som vår sol som sväller upp och dras samman till en vit dvärg ges här från Uppsala universitet

Hittills var det inte varit känt hur lång tid det tar för stjärnan att samla in detta material. Nu har forskare för första gången datorsimulerat hur röda superjättar kan se ut då de är inbäddade i dessa "kokonger" före explosionen.

Gamla teleskoparkiv visar att det finns bilder av stjärnor som exploderade ungefär ett år efter att bilden togs. Stjärnorna ser normala ut i dessa bilder, vilket innebär att de ännu inte kan ha byggt upp den teoretiska (ännu har vi inte sett en sådan skiva) cirkumstellära skivan. Detta tyder på att kokongen av materia uppstår på mindre än ett år vilket ses som extremt snabbt.

Benjamin Davies från Liverpool John Moores University huvudförfattare till artikeln, säger "Det täta materialet döljer nästan helt stjärnan, vilket gör den 100 gånger svagare i den optiska (för det mänskliga ögats synliga del)  delen av spektrumet. Det betyder att dagen innan stjärnan exploderar skulle man sannolikt inte kunna se stjärnan. Han tillägger: "Hittills har vi bara kunnat få detaljerade observationer av supernovor timmar efter att de redan har hänt. Med detta tidiga varningssystem kan vi göra oss redo att observera dem i realtid och då rikta världens bästa teleskop mot dem och se dem bokstavligen slitas i bitar framför våra ögon.

Finns en del att lära om detta. Viktigast kanske att förbereda oss om en förestående explosion sker i vårt närområde (under 200 ljusår bort).

Bild vikipedia på en supernova i detta fall resterna efter Keplers supernova, SN 1604. 

söndag 23 oktober 2022

Barium upptäckt i en exoplanets atmosfär

 


Med hjälp av Europeiska sydobservatoriets Very Large Telescope (ESO:s VLT) i Chile har astronomer upptäckt det tyngsta grundämnet hittills i en exoplanets atmosfär. Upptäckten av grundämnet barium på höga altituder i atmosfärerna på gasjättarna WASP-76 b och WASP-121 b  (OBS; de är de inte ingående i  samma solsystem)var oväntad. Upptäckten ger frågor om hur dessa planeters  atmosfärer ser ut.

“Den förbryllande och motsägelsefulla frågan är: varför finns ett så pass tungt grundämne i de övre skiktet av atmosfären på dessa planeter?” det frågade sig Tomás Azevedo Silva, doktorand på Portos universitet och Instituto de Astrofísica e Ciências do Espaço (IA) i Portugal, som ledde studien som publicerades i dagarna i Astronomy & Astrophysics.

WASP-76b och WASP-121b är så kallade ultraheta Jupiterplaneter. Deras storlekar överensstämmer med Jupiters. Men de har en yttemperatur på är över 1000 °C. Detta till skillnad mot Jupiters -140° C . WASP-76 b och WASP-121 b heta yta  beror på närheten till sina solar  båda planeterna fullbordar  ett omlopp på ca ett eller två dygn. Planeterna har exotiska egenskaper: på WASP-76 b  regnar det troligen järn.

Forskarna förvånades över förekomsten av barium i de övre skikten i exoplaneternas atmosfärer då det är ett grundämne som är 2,5 gånger tyngre än järn. “Med tanke på planeternas starka gravitation förväntade vi oss att tunga grundämnen som barium snabbt skulle falla ner mot planetens yta” säger medförfattaren till upptäckten Olivier Demangeon, som arbetar vid Portos universitet och IA.

“Detta var på ett sätt en oavsiktlig upptäckt” säger Azevedo Silva. “Vi förväntade oss inte och letade inte efter barium och var därför tvungna att dubbelkolla att signalen i spektrumet verkligen kom från planeten och från barion eftersom grundämnet inte hade upptäckts tidigare i någon exoplanets atmosfär”.

Det faktum att barium nu upptäckts i två  exoplaneter indikerar att ultraheta Jupiterplaneter kan vara än mer exotiska än man tidigare trott. Även om vi då och då detekterar barium även i jordens atmosfär i form av den starka gröna färgen i fyrverkerier och i övre atmosfären vid norrsken så är frågan för forskarna vilken naturlig process som kan ge upphov till ett så tungt grundämne på så hög höjd på exoplaneterna. “För närvarande vet vi inte vilka mekanismer som ger dessa resultat” förklarar Demangeon.

Det krävs mycket specialiserad utrustning för att bestämma sammansättningen hos en exoplanets atmosfär. Forskarna använde ESPRESSO-instrumentet på ESO:s VLT i Chile för att analysera moderstjärnornas ljus då det filtrerades genom atmosfärerna på WASP-76  och WASP-121 b.

De nya resultaten visar att vi bara har skrapat på ytan av exoplaneters mysterier. Med framtida instrument som den högupplösande spektrografen ANDES (ArmazoNes high Dispersion Echelle Spectrograph) på ESO:s kommande Extremely Large Telescope (ELT), kommer astronomerna att kunna studera atmosfärer hos stora och små exoplaneter och även på  steniga jordlika planeter med mycket större detaljrikedom.

Vi bör vara gränslösa då vi undersöker fenomen i universum. De gränser vi sätter under en undersökning är mänskliga men inte universums gränser. I universum finns inga gränser allt kan ske, allt kan finnas hur annorlunda vi än kan tänka oss det och vi kan kanske som människor inte tänka oss allt som kan finnas (min anm.). Då vi vet att norrsken innehåller barium kan man tänka sig att det i stora Jupiterliknande planeter som finns nära sin sol kan ge samma effekt. Här kan norrsken finnas och av sådan storlek nere i atmosfären att även här ges upphov till barium i övre atmosfärskiktet

Bild vikipedia på en konstnärlig bild av WASP-76b (baserat på data från 2020).

lördag 22 oktober 2022

Ett svart hål därute sänder en stark stråle mot en granngalax

 


I medföljande fil finns en youtube en film som visarskeendet därute.

Med hjälp av medborgarforskare har ett team av astronomer upptäckt ett  svart hål som sänder ut en eldliknande jetstråle mot en granngalax. Det svarta hålet finns i en galax cirka en miljard ljusår från jorden som har beteckningen RAD12. Upptäckten publicerades i dagarna i Monthly Notices of the Royal Astronomical Society: Letters.

Galaxer delas vanligtvis in i två huvudklasser baserat på deras morfologi: spiralgalax eller elliptisk galax. Spiralgalaxer har optiskt sett blå spiralarmar med ett överflöd av kall gas och damm. I dessa galaxer bildas nya stjärnor med en genomsnittlig hastighet av en solliknande stjärna per år. Elliptiska galaxer är gulaktiga och saknar  egenskaper som spiralarmar. Stjärnbildningen i elliptiska galaxer är mycket knapp.

 Det är ett mysterium  varför de elliptiska galaxer vi ser idag inte har bildat nya stjärnor på miljarder år. Mycket tyder dock på att supermassiva svarta hål är anledningen. Dess svarta hål spyr ut gigantiska strålar som rör sig i mycket höga hastigheter ut från galaxen. I dessa finns materia som skulle krävts stjärnbildning: kall gas och damm.

Den unika karaktären hos RAD12 hade observerats 2013 med hjälp av optisk data från Sloan Digitized Sky Survey (SDSS) och radiodata från Very Large Array (FIRST-undersökningen). Uppföljningsobservation med Giant Meterwave Radio Telescope (GMRT) i Indien krävdes dock för att bekräfta dess exotiska natur: Det svarta hålet i RAD12 ses kasta ut en stråle mot en angränsande galax, som har beteckningen RAD12-B.

Vanligast matas strålar av detta slag ut parvis och rör sig i motsatta riktningar vid relativistiska hastigheter. Varför endast en jetstråle kommer från RAD12 ut är ett mysterium. Jetstrålen ses som en konisk stam av ung plasma som kastas ut från centrum där det svarta hålet finns och når långt bortom de synliga stjärnorna i RAD12.

 GMRT-observationerna avslöjade att det svagare och äldre plasmat sträcker sig långt bortom den centrala koniska stammen och blossar ut som locket på en svamp (ses i rött i tricolor-bilden som finns ovan). Hela strukturen är 440 tusen ljusår lång vilket är mycket större än galaxen själv.

RAD12-fenomenet liknar inget tidigare känt fenomen. Det är första gången en jetstråle har observerats kollidera med en stor galax som RAD12-B. Astronomer är nu ett steg närmare att förstå effekterna av sådana interaktioner i elliptiska galaxer vilket troligen ger en brist av kall gas och därmed förhindrar ny stjärnbildning.

Forskningen framstår som en "RAD@home medborgarvetenskaplig upptäckt av en AGN ((Active Galactic Nucleus) som spyr en stor unipolär radiobubbla i riktning mot sin följeslagare", artikeln publicerad i Monthly Notices of the Royal Astronomical Society: Letters.

Men jag undrar likväl varför det sker i just elliptiska galaxer och om spiralgalaxers spiralarmar en gång kommer att dras samman så galaxen blir  elliptisk och stjärnbildning även här då upphör.

Bild från https://www.space.com/ med följande text "Plasma emerging from RAD12 and blasting a neighboring galaxy. (Image credit: Ananda Hota/GMRT/CFHT/MeerKAT (CC BY 4.0))"

fredag 21 oktober 2022

Finns gasen metylbromid (Brommetan) på exoplaneter kan det vara tecken på liv.

 


Broccoli är en växt tillsammans med flera andra växter och mikroorganismer som avger gaser som hjälper dem att eliminera toxiner. Forskare tror att sökande efter gaser av detta slag kan ge övertygande bevis på liv på andra planeter (om man finner dem).

Dessa gaser bildas när organismer tillsätter en kolatom och tre väteatomer till ett oönskat kemiskt element (toxiner som är till skada elimineras då). Denna process, kallas metylering och kan omvandla potentiellt giftiga toxiner till gaser som  släpps ut i atmosfären. Om dessa gaser upptäcks i en planets atmosfär skulle det indikera på eventuellt liv någonstans på den planeten. 

Metylering är så utbredd på jorden att vi antar att det bör ske på fler platser därute om där finns liv, säger Michaela Leung, planetforskare vid UCR (University of California – Riverside). "De flesta celler har mekanismer för att eliminera föroreningar."

En metylerad gas, metylbromid, har flera fördelar jämfört med andra gaser som traditionellt ingår i sökandet efter liv utanför vårt solsystem. Leung genomförde nyligen en studie som publicerades i The Astrophysical Journal där Leung visar sitt resultat efter att ha studerat och kvantifierat metylbromids fördelar.

För det första stannar metylbromid i atmosfärer under en kortare tid än konventionella biosignaturgaser.

"Om du hittar det är chansen stor att den inte släpptes ut för så länge sedan - och det som gjorde det  fortfarande gör det”, säger Leung.

Metylbromid utsöndras av högre livsformer snarare än som exempelvis metan som kan komma från mikrober. Men man ska även ta hänsyn till att det är en gas som kan komma  från en vulkan eller någon annan geologisk process.

"Det finns dock begränsade sätt att generera denna gas med icke-biologiska medel, så att hitta den är mer vägledande för livet än för vulkanism", säger Leung.

Dessutom absorberar metylbromid ljus likt även en annan biosignatur, metylklorid vilket gör att om båda dessa gaser närvarar är det än troligare att det finns liv.

Även om metylbromid är utbredd på jorden är det inte lätt att upptäcka i vår atmosfär på grund av intensiteten i vår sols UV-ljus. Ultraviolett strålning utlöser kemiska reaktioner som bryter ner vattenmolekyler i atmosfären och delar upp dem i gasförstörande produkter. Studien visade dock att metylbromid lättare skulle kunna detekteras runt en M-dvärgstjärna än i system med en sol som vår eller liknande solsystem. M-dvärgar är mindre och svalare än vår sol, och de producerar mindre UV-strålning och därmed sker mindre vattennedbrytning på en planet där vatten finns i dess närområde.

"En M-dvärgstjärna ökar koncentrationen och detekterbarheten av metylbromid med fyra storleksordningar jämfört med solens effekt på Jorden", sa Leung.

Detta är en fördel för astronomer eftersom M-dvärgar är mer än 10 gånger vanligare än stjärnor som vår sol och därför blivit de första målen i sökningen efter liv på exoplaneter.

Forskarna  är optimistiska i att astrobiologer i framtiden kommer att  överväga sökandet efter metylbromid inom en snar framtid.

Även om James Webb Space Teleskopet inte är speciellt optimerat för att upptäcka jordliknande planetatmosfärer runt andra stjärnors planeter kommer några extremt stora markbaserade teleskop snart att tas i drift (i slutet av decenniet). Teleskop som blir bättre lämpade för att analysera sammansättningen av planeters atmosfärer.

Bild på hur denna atom är uppbyggd. Bild vikipedia.

torsdag 20 oktober 2022

Den udda jätteradiogalaxen GRG-J223301+131502

 


Ett internationellt team av astronomer har nyligen genomfört en radio- och optisk observation av en jätteradiogalax som kallas GRG-J223301+131502. Resultaten av observationskampanjen ger mer kunskap om denna galax egenskaper och dess exceptionella jetstrålstruktur. Resultatet rapporterades i en artikel som publicerades den 26 september i arXiv.org.

Jätteradiogalaxer (GRG) är radiogalaxer med en total projicerad linjär längd av strålning som överstiger 2,3 miljoner ljusår. De är sällsynta och finns i miljöer med låg densitet. GRG är viktiga för astronomer då man studerar bildandet och utvecklingen av radiokällor.

Hittills har cirka tusen GRG upptäckts och av dessa överstiger tio  10 miljoner ljusår i storlek. Den största har beteckningen J1420-0545 och beräknas vara av en storlek av cirka 16 miljoner ljusår.

Vid en rödförskjutning på 0,093 är GRG-J223301+131502 ( GRG-J2233+1315) en gigantisk radiogalax som identifierades första gången 2017 som en del av projektet Search and Analysis of GRGs with Associated Nuclei (SAGAN). Den har en total projicerad linjär storlek på nästan 5,57 miljoner ljusår och är värd för SDSSJ223301.30 +131502.5  vilket är en galax av S0-a-typ som uppvisar en stor diffus stjärngloria. 

Vid tidigare studier av GRG-J2233+1315 har man upptäckt att galaxen finns i en tät klustermiljö vilket står i kontrast till de nuvarande teorierna om att GRG vanligtvis finns i  galaxgles miljö. För att verifiera att denna gfanns i tät galaxmiljö  utförde  en grupp astronomer under ledning av Pratik Dabhade vid Sorbonne University i Paris, Frankrike flerfrekventa radioobservationer av GRG-J2233+1315 med Giant Metrewave Radio Telescope (GMRT) och Low-Frequency Array (LOFAR) samt spektroskopiska observationer med William Herschel Telescope (WHT).

De djupa och högupplösta radiobilderna från detta avslöjade att så var fallet men även  en enorm jetstråle, cirka 772 000 ljusår stor, som härrörde från radiokärnan i GRG-J2233+1315 och  som sträckte sig cirka 326 000 ljusår. Bilderna visar också att galaxen uppvisar lober utan några framträdande hotspots och liknar en skivstång. Forskarna kallade därför GRG-J2233+1315 för Barbell GRG. Dessa detekterade lober visade sig ha en magnetfältstyrka på cirka 5 μG och utifrån spektralundersökningen åldrar mellan 110 och 200 miljoner år.

Observationerna visade att Skivstångsliknande GRG har en rödförskjutning på cirka 0,099 och att dess linjära storlek är större än man tidigare trott - nästan 6 miljoner ljusår större. Resultaten indikerar att värdgalaxen har en relativt låg stjärnbildningshastighet av endast cirka 0,001 solmassor per år.

Bild https://phys.org/news/2022-10-peculiar-giant-radio-galaxy-grg-j223301131502.html

onsdag 19 oktober 2022

En gång kan Mars haft (eller har?) en undre värld av mikroskopiska organismer

 


En mikroorganism eller mikrob är en organism som är så liten att den inte kan ses utan ett mikroskop.

I en studie i tidskriften Nature Astronomy beskriver Boris Sauterey postdoktor vid Sorbonne University och hans team att de använde klimat- och terrängmodeller för att utvärdera marsskorpans livsmöjligheter under cirka 4 miljarder år sedan för att utröna om  Mars historiskt haft sjöar och varit mer livsvänlig än idag.

Det antas att väte och metanproducerande mikrober som kan ha blomstrat en bit under Mars yta tillsammans med några tiotals centimeter smuts vilket är tillräckligt för att skydda dem mot inkommande strålning. Där ytan var isfri kunde det ha svärmat med dessa organismer, enligt Sauterey.

Tidiga Mars var förmodligen fuktig med varmt klimat som dock kan  ha äventyrats av att mycket väte sugits ut ur den tunna, koldioxidrika atmosfären, enligt Sauterey. När temperaturen sjönk till nästan -200 grader Celsius  skulle alla organismer vid eller nära ytan försvunnet. Medan mikrober på jorden ha hjälpt till att upprätthålla tempererade förhållanden, med tanke på den då kvävedominerade atmosfären på Jorden, säger forskarna.

SETI-institutets Kaveh Pahlevan säger att framtida modeller av Mars klimat måste ta hänsyn till detta forskningsresultat. 

Pahlevan vilken ledde en separat studie där resultatet tyder på att  Mars en gång hade varma hav (flytande vatten) under troligen miljontals år. Atmosfären skulle då ha varit tät och bestående mestadels väte som fungerade som en värmefångande växthusgas som så småningom transporterades till högre höjder och förlorades ut i rymden, enligt teamet. Den franska studien undersökte klimateffekterna av möjliga mikrober (om de funnits)  då Mars atmosfär dominerades av koldioxid. säger Pahlevan.

"Vad deras studie klargör är dock att om (detta) liv fanns på Mars" under denna tidigare period, "skulle det ha haft ett stort inflytande på det rådande klimatet", tillade han i ett mejl.

De franska forskarna föreslår att den outforskade Hellas Planita eller slätten, och Jezero-kratern på den nordvästra kanten av Isidis Planita, där NASA: s Perseverance-rover för närvarande samlar in sten för att sändas till jorden om ett decennium är en lämplig plats att söka efter spår från dessa mikrober.

Sauterey anser att vi bör söka efter mikrobiellt liv djupt ner under Mars djup.

"Kan Mars fortfarande vara bebodd idag av mikroorganismer som härstammar från denna primitiva biosfär?" frågar han. "I så fall var?"

En dag vet vi svaret till dess kan vi bara undra.

Bild vikipedia på en mikroorganism i detta fall Euglena som är ett exempel på en eukaryot mikroorganism.

tisdag 18 oktober 2022

De bäst tagna bilderna från teleskop på Jorden av Jupiters månar Europa och Ganymedes.

 


Cocktailen av kemikalier som finns i de frusna ytorna på två av Jupiters största månar ses ovan i de mest detaljerade bilderna som någonsin tagits av dem av ett teleskop beläget på jorden. Självfallet är bilder av rymdbaserade teleskop som Webbteleskopet eller närbesök av sonder av  betydligt bättre skärpa.

Planetforskare från University of Leicester's School of Physics and Astronomy har presenterat de nya bilderna av Europa och Ganymedes. Se bilderna i länken. här.

Det är troligen de skarpaste bilderna av Jupiters månar som någonsin förvärvats från  markbaserade observatorium och avslöjar nya insikter i de processer som sker i den kemiska sammansättningen av dessa massiva månar - inklusive dess geologiska egenskaper som den långa riftliknande linjen som skär över Europas yta.

Ganymedes och Europa är två av de fyra största månarna som kretsar kring Jupiter kända som de galileiska månarna. Medan Europa är ganska lik i storlek som vår egen måne är Ganymedes den största månen i hela solsystemet.

Leicester-teamet, som leddes av doktoranden Oliver King, använde Europeiska sydobservatoriets Very Large Telescope (VLT) i Chile för att observera och kartlägga ytorna av dessa två världar.

De nya observationerna registrerade mängden solljus som reflekteras från Europa och Ganymedes ytor vid olika infraröda våglängder vilket gav ett reflektanspektrum. Dessa reflektanspektra analyserades genom att utveckla en datormodell som jämför varje observerat spektrum med spektra av olika ämnen.

Bilderna och spektra av Europa, publicerade i Planetary Science Journal, avslöjar att Europas yta huvudsakligen består av frusen vattenis tillsammans med icke-ismaterial som förorenar ytans is.

Oliver King från University of Leicester School of Physics and Astronomy sa: "Vi kartlade fördelningen av de olika materialen på ytan, inklusive svavelsyrafrost som främst finns på den sida av Europa som är mest bombarderad av gaserna som omger Jupiter."

"I datamodelleringen fann vi att det kan finnas en mängd olika salter  på ytan men föreslog att infraröd spektroskopi ensam i allmänhet inte kan identifiera vilka specifika typer av salt som finns där."

Observationerna av Ganymedes, publicerade i tidskriften JGR: Planets och visar hur ytan består av två huvudtyper av terräng: yngre områden med stora mängder vattenis och gamla områden som huvudsakligen består av ett mörkgrått material vars sammansättning är okänd.

De isiga områdena (blå på bilderna) inkluderar Ganymedes polarområden och kratrar - där en nedslagshändelse  avslöjat den nyare  isen i Ganymedes skorpa. Teamet kartlade hur storleken på iskornen på Ganymedes varierar över ytan och den möjliga fördelningarna av en mängd olika salter av vilka några kan härstamma inifrån Ganymedes själv.

Very Large Telescope ligger på hög höjd i norra Chile  och har speglar på över 8 meter i diameter. Det är en av de mest kraftfulla teleskopanläggningarna i världen.

Oliver King tillägger: "Detta teleskop har gjort det möjligt för oss att genomföra en detaljerad kartläggning av Europa och Ganymedes och observera funktioner på deras ytor som är mindre än 150 kmi diameterr - allt på ett avstånd på mer än  600 miljoner kilometer från jorden. Kartläggning i denna fina skala var tidigare bara möjlig genom att skicka rymdfarkoster hela vägen till Jupiter för att observera månarna på nära håll."

Professor Leigh Fletcher, som övervakade VLT-studien är  medlem i vetenskapsteamen för ESA: s Jupiter Icy Moons Explorer (JUICE) och NASA: s Europa Clipper-uppdrag, som kommer att utforska Ganymede och Europa på nära håll i början av 2030-talet.

Bilder av de joviska månarna Europa (vänster) och Ganymedes (höger) tagna av Europeiska sydobservatoriets Very Large Telescope (VLT) i Chile. (Bildkredit: ESO / King &Fletcher)