Google

Translate blog

fredag 27 september 2024

Det kraftigaste paret av jetstrålar från ett svart hål som någonsin setts

 


Bild https://www.caltech.edu  Bilden togs av Europas radioteleskop LOFAR (LOw Frequency ARray) och visar det längsta kända paret av jetstrålar från ett svart hål. Jetsystemet har fått smeknamnet Porphyrion efter en grekisk jätte av medupptäckaren Aivin Gast vid University of Oxford sträcker sig över 23 miljoner ljusår ut från hålet vilket motsvarar 140 galaxer av Vintergatans storlek  uppradade längs med varandra. Galaxen som hyser det supermassiva svarta hålet finns 7,5 miljarder ljusår bort och ses som en liten prick i mitten av bilden. Den största klotiknande strukturen nära mitten är ett separat mindre jetstrålsystem. Den relativa storleken på vår galax (i bildens skala)Vintergatan ses i det nedre, högra hörnet.

Källa: LOFAR Collaboration / Martijn Oei (Caltech)

Jetsystemet Porphyrion (de två jetstrålarnas beteckning) är det största systemet av detta slag som hittills upptäckts under kartläggningen av universums jetstrålar som har sitt ursprung från svarta hål. Ett antal av mer än 10 000 ljussvaga megastrukturer har upptäckts därute. Men just denna population av gigantiska jetstrålar upptäcktes med hjälp av Europas radioteleskop LOFAR (LOwFrequency ARray)

Redan 2018 började Martijn Oei, postdoktor vid Caltech och huvudförfattare till en artikel i Nature med titeln "The Milky Way would be a little dot in these two giant eruptions."  knuten till Leidenobservatoriet i Nederländerna och hans kollegor använda LOFAR för att studera jetstrålar i rumden då inte från svarta hål utan det kosmiska nät av strimmiga filament som korsar rymden mellan galaxerna. När teamet inspekterade bilderna för att hitta de svaga filamenten började de lägga märke till flera påfallande långa jetstrålesystem som de sedan förstod kom från svarta hål i galaxer därute. 

För att systematiskt söka efter fler oupptäckta jetstrålar inspekterade teamet bilderna och använde även maskininlärningsverktyg för att skanna bilderna efter fler jetstrålar och tog även hjälp av medborgarforskare runt om i världen för att analysera bilderna. Frågan var hur jetstrålar kan sträcka sig så långt bortom sina galaxer utan att destabiliseras (upplösas).

– Martijns arbete har visat att det inte är något speciellt med miljöerna kring dessa jättelika källor (svarta hål) som gör att dessa strålar blir så långa, beskriver Hardcastle, som är expert på fysiken bakom jetstrålar från svarta hål. – Min tolkning är att vi behöver en ovanligt långlivad och stabil ackretionshändelse runt det centrala, supermassiva svarta hålet för att det ska kunna vara aktivt under så lång tid – ungefär en miljard år – och för att säkerställa att jetstrålarna fortsätter att peka i samma riktning under hela den tiden. Det vi lär oss av det stora antalet i universum av långa jetstrålar är att fenomenet måste vara en relativt vanlig företeelse.

Forskarlaget använde  W. M. Keck-observatoriet på Hawaii för att visa att Porphyrion finns 7,5 miljarder ljusår från jorden. "Fram tills nu har dessa gigantiska jetsystem sett ut att vara ett fenomen i närliggande universum", beskriver Oei. "Om avlägsna jetstrålar som dessa kan nå samma skala som den kosmiska väven https://sv.wikipedia.org/wiki/Galaxfilament kan varje plats i universum ha påverkats av svarta håls aktivitet någon gång i tiden", beskriver Oei.

Observationerna från Keckobservatoriet avslöjade även att Porphyrion uppstod från ett aktivt svart hål i strålningsläge, i motsats till ett som är i ett lugnt läge. När supermassiva svarta hål blir aktiva, med andra ord när deras enorma gravitationskrafter drar i och värmer upp omgivande material, tror man att de avger den energin som strålning. Svarta hål i strålningsläge var vanligare i det unga universum medan jet-liknande hål (där jetstrålning spys ut) är vanligare i dagens universum.

En nyskriven artikel som beskriver deras senaste omgång av gigantiska utflöden, som innehåller mer än 8 000 jetstrålepar har accepterats för publicering i tidskriften Astronomy & Astrophysics.

torsdag 26 september 2024

Fler svarta hål i det tidiga universum än väntat

 


Bild wikipedia av det svarta hålet i galaxen M87, från Event Horizon Telescope.

Det verkar finnas ett oräkneligt antal svarta hål i universum som drar till sig allt som passerar i dess närområde. De tyngsta svarta hålen, som väger miljoner eller miljarder gånger så mycket som vår sol finns i galaxers centrum. Dessa slukar allt som passerar i närheten och flammar då upp som ljusa fyrar i universum. Dessa kallas aktiva galaxkärnor. Men det finns även svarta hål inte drar  in omgivande material hela tiden, utan i perioder och i skurar vilket då får deras ljusstyrka att flimra.

Med hjälp av NASA:s rymdteleskop Hubble har nu ett internationellt forskarlag under ledning av forskare vid Institutionen för astronomi vid Stockholms universitet hittat fler svarta hål i det unga universum än vad som tidigare rapporterats. De nya resultaten kan hjälpa forskare att förstå hur supermassiva svarta hål skapas.

För närvarande har forskarna inte en hel bild av hur de första svarta hålen bildades efter bigbang. Det är känt att supermassiva svarta hål  kan väga mer än en miljard solar finns i mitten av flertalet, troligen alla,  galaxer, mindre än en miljard år efter bigbang.

– Många av de här objekten verkar vara mer massiva än vi först trodde de skulle vara så tidigt i tid och rum. Antingen bildades de väldigt massiva från början eller så växte de extremt snabbt, beskriver Alice Young, doktorand vid Stockholms universitet och medförfattare till studien.

Svarta hål spelar en viktig roll i alla galaxers livscykel men det finns stora osäkerheter i förståelsen av hur galaxer utvecklas. För att få en fullständig bild av kopplingen mellan galaxers och svarta håls utveckling  använde forskarna Hubbleteleskopet för att kartlägga hur många svarta hål som finns i en population av ljussvaga galaxer då universum bara var några procent av sin nuvarande ålder.

De första observationerna av kartläggningsområdet fotograferades på nytt av Hubble efter några år. Detta gjorde det möjligt för teamet att mäta variationer i galaxernas ljusstyrka. Dessa variationer är ett tydligt tecken på svarta håls fluktuation. Forskarlaget identifierade fler svarta hål än vad som tidigare hittats med andra metoder.

De nya observationerna tyder på att vissa svarta hål troligen bildades av kollaps av massiva stjärnor under den första miljarden år av kosmisk tid. Dessa typer av stjärnor (bildade av nästan enbart väte och helium) fanns bara vid mycket tidiga tidpunkter i universum eftersom senare generationers stjärnor är förorenade av rester av stjärnor som redan har funnits och kollapsat (och vid dessa supernovor fått betydligt fler metaller).

 Andra alternativ av teori för att bilda svarta hål är kollapsande gasmoln, sammanslagningar av stjärnor i massiva hopar och "ursprungliga" svarta hål som bildades (genom fysiskt spekulativa mekanismer) under de första sekunderna efter big bang. Med denna nya information av hur svarta hål bildas kan mer exakta modeller av hur galaxer bildas konstrueras.

– Bildningsmekanismen för tidiga svarta hål är en viktig del av pusslet av galaxers utveckling, beskriver Matthew Hayes vid Institutionen för astronomi vid Stockholms universitet och huvudförfattare till studien. Tillsammans med modeller för hur svarta hål växer kan beräkningar av galaxers utveckling nu placeras på en mer fysikaliskt motiverad grund, med ett exakt schema för hur svarta hål uppstod från kollapsande massiva stjärnor i tidens början.

Studien är publicerad i The Astrophysical Journal Letters.

Kan det vara så att svarta hål kan ha sitt ursprung i ett enda svart hål som fanns innan BigBang? När då gränsen för dess möjliga gravitation (sammanpressning)  och storlek blev kritisk uppstod BigBang. Och flertalet svarta hål uppkom ur det ursprungligt stora. Efter BigBang uppkom då stjärnbildning  till runt dessa av gas som kretsade runt de nu många stora svarta molnen som var en produkt av explosionen av det enorma som fyllt allt i rummet som var nästintill icke existerande i storlek. Ett annat alternativ är strängteorin den bör studeras mer för att lösa kosmos mysterier som verkar omöjliga att lösa med dagens paradigm

onsdag 25 september 2024

Under 485 miljard år har jordens globala temperatur förändrats drastiskt av koldioxid

 


Bild https://news.arizona.edu  Jorden har varit varmare än idag under de senaste 485 miljoner åren men i de perioder då uppvärmning skett har djur och växter kunnat vänja sig (obs inte att förväxla med katastrofhändelser som även skett med massutrotningar). Men människor och djur kan inte anpassa sig tillräckligt snabbt för att hålla jämna steg med de klimatförändringar som orsakas av människan och som sker idag och i framtiden. Det går för snabbt tidsmässigt.  Shutterstock (på engelska)

I en ny studie under ledning från University of Arizona och Smithsonian ges den mest detaljerade inblicken hittills av hur jordens yttemperatur har förändrats under de senaste 485 miljoner åren.

Studien, som publicerats i tidskriften Science, presenterar en kurva över den globala medeltemperaturen på Jorden och avslöjar att jordens temperatur har varierat mer än man tidigare trott under stora delar av den fanerozoikumska tiden,  en geologisk tid då livet diversifierades, och då  flera massutdöenden skedde. Kurvan bekräftar också att jordens temperatur är starkt korrelerad med mängden koldioxid i atmosfären.

Början av den fanerozoikumska tiden som inföll för 540 miljoner år sedan och som markeras av den kambriska explosionen, en tidpunkt då komplexa, hårdskaliga organismer först dyker upp i fossila lager. Även om forskarna kan skapa simuleringar som blickar 540 miljoner år tillbaka i tiden fokuserar temperaturkurvan i studien på de senaste 485 miljoner åren eftersom det finns begränsade geologiska data om temperaturer före denna tid.

– Det är svårt att hitta stenar som är så gamla och har temperaturindikatorer bevarade i sig – inte ens ner till 485 miljoner år sedan finns så många. Vi var begränsade med hur långt tillbaka vi kunde gå, beskriver Jessica Tierney, paleoklimatolog och professor i geovetenskap vid University of Arizona,  medförfattare till studien.

Forskarna skapade temperaturkurvan med hjälp av  datasimulering. Detta gjorde det möjligt för dem att kombinera data från geologiska register och klimatmodeller för att skapa en mer sammanhållen förståelse av forntida klimat."Metoden utvecklades ursprungligen för väderprognoser", beskriver Emily Judd, huvudförfattare till artikeln och tidigare postdoktoral forskare vid Smithsonian National Museum of Natural History och University of Arizona. "I stället för att metoden för att förutsäga framtida väder använder vi den här för att simulera forntida klimat."

Att förfina forskarnas förståelse för hur jordens temperatur har fluktuerat över tid ger förståelse för dagens klimatförändringar.

"Om du studerar de senaste miljoner åren kommer du inte att hitta något som ser ut som det vi förväntar oss år 2100 eller 2500", beskriver Scott Wing, medförfattare till artikeln och kurator för paleobotanik vid Smithsonian National Museum of Natural History. – Man måste gå ännu längre tillbaka till perioder då jorden var betydligt varmare än Idag  det är det enda sättet för oss att få en bättre förståelse för hur klimatet kan komma att förändras i framtiden.

Den nya kurvan visar att temperaturen varierat mer under de senaste 485 miljoner åren än man tidigare trott. Under eonen sträckte sig den globala temperaturen från 11 till 36 grader celcius högre än i dag. Perioder av extrem värme var oftast kopplade till förhöjda halter av växthusgasen koldioxid i atmosfären.

"Den här forskningen visar tydligt att koldioxid är den dominerande anledningen  global temperaturhöjning över geologisk tid", beskriver Tierney. "När CO2 är låg är temperaturen lägre när CO2 är hög är temperaturen högre."Att snabbt gå mot ett varmare klimat kan innebära fara för mänskligheten beskriver forskarna.

Att långsamt över tid gå mot ett varmare eller kallare klimat gör att livets olika former vänjer sig över tid. Under bronsåldern hade vi ett mycket varmare klimat ex i Norden än under lilla istiden på 1600 talet. Faran nu är att vårt klimat blir varmare snabbt under kanske en anda generation och vi ska vänja oss vid detta men kan livet på Jorden detta. Visst liv kan säkert detta men inte allt. Kan människan det eller blir det en storm av klimatflyktingar till Norden? Ingen vet i dag.

tisdag 24 september 2024

Jorden kan en gång haft ett ringsystem

 


Bild wikipedia på Saturnus ringar foto taget av sonden Cassini 2004.

En gång för cirka 466 miljoner år sedan kan Jorden ha haft ett ringsystem. Perioden då var en av ovanligt intensiv tid av meteoritbombardemang och kallas ordovicium

Denna överraskande hypotes publicerades i dagarna i Earth and Planetary Science Letters och har sitt ursprung från plattektoniska rekonstruktioner av tiden för ordovicium där man noterat positioner för 21 asteroidnedslagskratrar som skedde då. Dessa kratrar finns inom 30 grader från ekvatorn, trots att över 70 procent av jordens kontinentala skorpa ligger utanför detta område, en anomali som konventionella teorier inte kan förklara. Här kommer teorin om ett ringsystemet in.

Forskargruppen vid Monash University's School of Earth, Atmosphere and Environment tror att detta lokala nedslagsmönster skapades då en stor asteroid hade närkontakt med jorden. När asteroiden passerade inom jordens Roche-gräns bröts den sönder på grund av tidvattenkrafter och bildade en skräpring runt planeten – liknande de ringar som ses runt Saturnus med flera gasjättar idag.

Roche-gränsen är det avstånd där ex en meteor inte längre kan hållas ihop av sin egen gravitation, på grund av att den påverkas av en större himlakropp. När meteor passerar Roche-gränsen slits den antingen itu eller så kraschar den helt enkelt ned på planeten som meteorit (er) beroende på dess storlek och massa

"Under miljontals år föll material från den här ringen gradvis ner på jorden, vilket skapade den ökning av meteoritnedslag som observerats i de geologiska lagren på en begränsad plats runt Jorden", beskriver studiens huvudförfattare, professor Andy Tomkins. – Vi ser också att i sedimentära lager i  bergarter från den här perioden finns extraordinära mängder meteoritrester. Det som gör det här fyndet än mer spännande är de potentiella klimatkonsekvenserna av ett sådant ringsystem , beskriver han. (och dess begränsade geografiska nedslagsplatser).

Kan liknande ringar ha funnits vid andra tidpunkter i vår planets historia som påverkat allt från klimat till livets fördelning? Denna forskning öppnar en ny gräns i studiet av jordens förflutna och ger nya insikter om de dynamiska interaktionerna mellan vår planet och  kosmos.

måndag 23 september 2024

En galax där ett svart hål stoppar ny stjärnbildning

 


Bild GS-10578 https://www.cam.ac.uk  representerar en unik möjlighet att studera hur de största galaxerna i universum blev – och förblev – vilande. Bild: Francesco D'Eugenio.

Ett internationellt forskarlag under ledning från University of Cambridge använde Webbteleskopet för att observera en galax som är ungefär lika stor som Vintergatan i det tidiga universum Tiden är ungefär två miljarder år efter Big Bang. Galaxen har ett svart hål likt flertalet andra galaxer. Men här har stjärnbildningen nästan helt avstannat, beskriver Francesco D'Eugenio, en av huvudförfattarna till studien som gjordes vid Kavli institute för kosmologi i Cambridge.

Galaxen heter officiellt GS-10578 men har smeknamnet "Pablos galax" efter den forskare som bestämde sig för att observera den i detalj. Dess totala massa är ungefär 200 miljarder gånger större än solens massa och de flesta av dess stjärnor bildades för mellan 12,5 och 11,5 miljarder år sedan.

– I det tidiga universum bildar de flesta galaxer mängder av stjärnor så det är intressant att se en så massiv avstannad stjärnbildning i en galax vid den här tidsperioden, beskriver professor Roberto Maiolino, medförfattare Kavli institute. "Om den hade haft tillräckligt med tid för att nå den här massiva storleken och mängden av stjärnor bör den process som stoppade stjärnbildningen sannolikt skett relativt snabbt."

Med hjälp av Webbteleskopet upptäckte forskarna att galaxen kastar ut stora mängder gas med en hastighet av cirka 1 000 kilometer per sekund vilket är tillräckligt snabbt för att gasen ska undkomma galaxens gravitation. Dessa utkast  kommer från rörelser i det svarta hålet i centrum.

Liksom andra galaxer med växande svarta hål har "Pablos galax" snabba utströmmande vindar av gas. Det är en kallare gas än den heta gas som annars brukar kastas ut från växande svarta hål vilket innebär att den är tätare och inte avger ljus vilket het gas gör. Webb, med sin överlägsna känslighet, kan se de mörka gasmolnen som lämnar galaxen genom att gasen blockerar en del av ljuset från galaxen bakom dem.

Gasmassan som kastas ut från galaxen är stor nog för att stoppa möjligheten till ny stjärnbildning. I grund och botten svälter det svarta hålet ihjäl galaxen (innebärande att det omöjliggörs stjärnbildning). Resultaten redovisas i tidskriften Nature Astronomy.

Referens: Francesco D’Eugenio, Pablo G. Pérez-González et al. ‘A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z=3.’ Nature Astronomy (2024). DOI: 10.1038/s41550-024-02345-

söndag 22 september 2024

Den första mörka energin kan lösa de två gåtfullaste frågorna inom kosmologi

 


Bild wikipedia Universums storskaliga sammansättning enligt en analys av data från WMAP (Wilkinson Microwave Anisotropy Probe (WMAP) (Explorer 80) ett NASA-rymdteleskop som hade som uppgift att mäta den kosmiska bakgrundsstrålning som har sitt ursprung av Big Bang.

En gåta är "Hubbles lag", som hänvisar till en obalans i mätningsresultat av hur snabbt universum expanderar. Den andra handlar om observationer av många tidiga, ljusstarka galaxer som existerade vid en tidpunkt då det  inte borde funnits galaxer och som visar sig äldre än universum.

Nu har MIT-teamet (Massachusetts Institute of Technology) funnit att båda gåtorna skulle kunna lösas om det tidiga universum innehöll mörk energi. En okänd form av energi som fysiker misstänker får universum att expandera och ge en fortsatt ökning av denna än idag. Tidig mörk energi är ett liknande, hypotetiskt fenomen som bara kan ha gjort ett kort framträdande och påverkat universums expansion i dess första ögonblick innan det försvann helt. Inte att förväxla med mörk energi som senare dök upp (kanske omvandlades den tidiga mörka energin till den som sedan finns, om nu denna energi  existerat eller existerar)

Vissa fysiker har misstänkt att tidig mörk energi kan vara nyckeln till att lösa Hubbles lag eftersom denna mystiska kraft skulle kunna påskynda universums tidiga expansion och förklara de två nämnda gåtorna ovan.

Forskarna har nu funnit att tidig mörk energi också kan förklara det förbryllande antalet ljusstarka galaxer som astronomer har observerat i det unga universum. I sin nya studie, som publicerats i dagarna i Monthly Notices of the Royal Astronomical Society har forskarna genom datormodellering visat hur galaxer bildades under universums första hundra miljoner år. Och hur de inkorporerade en mörk energikomponent bara under den tidigaste tidremsan, de fann  att antalet galaxer som uppstod ur den ursprungliga miljön blommade ut och passa in i astronomernas observationer.

"Du har de här öppna pusslen, beskriver Rohan Naidu, postdoktor vid MIT:s Kavliinstitut för astrofysik och rymdforskning och en av studiens författare. "Vi finner att tidig mörk energi faktiskt är en mycket elegant lösning på två av  gåtorna inom kosmologi som är mest intressanta."

Baserat på vanliga kosmologiska modeller och galaxbildningsmodeller borde det tagit tid för universum att bilda de första galaxerna. Det borde tagit miljarder år för urgasen att bilda stjärnor till ett antal galaxer lika stora och ljusstarka som Vintergatan. Men likväl fanns de bara några 100tal miljoner efter BigBang.

2023 gjorde NASA:s James Webb Space Telescope (JWST) en häpnadsväckande observation. Teleskopet som har förmågan att blicka längre tillbaka i tiden än något annat observatorium kan upptäckte då ett överraskande antal ljusstarka galaxer lika stora som Vintergatan under de första 500 miljoner åren efter BigBang då universum bara var 3 procent av sin nuvarande ålder.

För fysiker innebär observationerna att det antingen är något fundamentalt fel med fysiken som ligger till grund för kosmologin eller att det saknas en ingrediens i det tidiga universum som forskarna inte har tagit hänsyn till. MIT-teamet undersökte möjligheten av det senare och kom fram till att den saknade ingrediensen kan vara tidig mörk energi.

Fysiker har föreslagit att tidig mörk energi är en sorts antigravitationskraft som aktiveras vid universums första tid. Denna kraft skulle motverka gravitationens dragning inåt och påskynda universums tidiga expansion, på ett sätt som skulle lösa obalansen i mätningarna. Tidig mörk energi anses därför vara den mest sannolika lösningen på Hubblespänningen.

MIT-teamet undersökte om tidig mörk energi också kan vara nyckeln till att förklara den oväntade populationen av stora, ljusstarka galaxer som upptäckts av JWST i det tidiga universum. I studien har fysikerna undersökt hur tidig mörk energi kan påverka den tidiga strukturen i universum som gav upphov till de första galaxerna. De fokuserade på bildandet av halos av mörk materia – områden i rymden där gravitationen råkar vara starkare och där materia börjar ackumuleras.

"Vi tror att halos av mörk materia är universums osynliga skelett", förklarar Shen. – Strukturer av mörk materia bildas först och sedan bildas galaxer inuti dessa strukturer. Så vi förväntar oss att antalet ljusstarka galaxer borde vara proportionellt mot antalet stora halos av mörk materia.

Fysiker har fastställt att det finns minst sex huvudsakliga kosmologiska parametrar, varav en är Hubblekonstanten - en term som beskriver universums expansionshastighet. Andra parametrar beskriver densitetsfluktuationer i den ursprungliga soppan, omedelbart efter Big Bang ur vilken halos av mörk materia så småningom bildades.

MIT-teamet resonerade att om tidig mörk energi påverkar universums tidiga expansionshastighet på ett sätt som löser upp Hubblespänningen kan det påverka balansen mellan de andra kosmologiska parametrarna på ett sätt som kan öka antalet ljusstarka galaxer som dyker upp i tidigt skede. För att testa sin teori inkorporerade de en modell av tidig mörk energi (samma som råkar lösa upp Hubblespänningen) i ett empiriskt ramverk för galaxbildning för att se hur de tidigaste strukturerna av mörk materia utvecklas och ger upphov till de första galaxerna.

– Vad vi visar är att skelettstrukturen i det tidiga universum förändras på ett subtilt sätt där amplituden av fluktuationer ökar och man får stora halos och ljusstarkare galaxer som är på plats vid tidigare tidpunkter än man tidigare ansett,  beskriver Naidu. "Det betyder att saker och ting var rikligare och mer samlade i det tidiga universum."

– A priori hade jag inte förväntat mig att förekomsten av JWST:s tidiga ljusstarka galaxer skulle ha något att göra med tidig mörk energi. Men observationen visar kosmologiska parametrar i en riktning som ökar förekomsten av tidiga galaxer är intressant, beskriver Marc Kamionkowski, professor i teoretisk fysik vid Johns Hopkins University. Jag tror att mer arbete kommer att behöva göras för att etablera en koppling mellan tidiga galaxer och tidig mörk energi men oavsett hur det går är det en intressant och förhoppningsvis i slutändan fruktbar sak att testa, beskriver Kamionkowski, vilken dock ej själv var med i studien.

"Vi demonstrerade potentialen hos tidig mörk energi som en enhetlig lösning på de två stora frågorna som kosmologin står inför. Detta kan vara ett bevis för dess existens om resultaten från JWST konsolideras ytterligare, avslutar Vogelsberger. I framtiden kan vi införliva detta i stora kosmologiska simuleringar för att se vilka detaljerade förutsägelser vi får.

Studiens medförfattare inkluderade huvudförfattaren och Kavli-postdoktorn Xuejian (Jacob) Shen, och MIT-professorn i fysik Mark Vogelsberger, tillsammans med Michael Boylan-Kolchin vid University of Texas i Austin och Sandro Tacchella vid University of Cambridge.

Om det finns mörk materia och mörk energi måste det enligt mig bildats vid BigBang likt vanlig energi och vanlig materia. Men jag anser att all form av energi och materia är av samma slag men olika former vi ännu ej förstår. Men för att förklara varför det anses finnas två slags energi och materia måste vi börja att på allvar tänka utifrån strängteorins fysik. Jag tror att strängteorin är svaret på hur allt hänger samman. 

lördag 21 september 2024

Webbteleskopet undersöker vad som finns i Vintergatans yttre områden.

 


Bild https://science.nasa.gov Forskare har använt NASA:s James Webb Space Telescope för att undersöka utvalda stjärnbildande områden i de yttre av Vintergatan i kort- och mellaninfrarött ljus. Inom ett stjärnbildningsområde här känt som Digel Cloud 2S, observerades  unga, nybildade stjärnor och långa jetstrålar av material som utgick därifrån. Den av Webbteleskopet tagna bilden visar även  många galaxer och röda nebulösa (gasstrukturer) i regionens bakgrund. I bilden ses färger i olika filter från Webbs MIRI och NIRCam: rött (F1280W, F770W, F444W), grönt (F356W, F200W) och blått (F150W; F115W).

NASA, ESA, CSA, STScI, M. Ressler (JPL).

Ett team av forskare använde Webbs NIRCam (Near-Infrared Camera) och MIRI (Mid-Infrared Instrument) för att avbilda utvalda områden inom två molekylmoln som kallas Digel Clouds 1 och 2. Med sin höga grad av känslighet och höga upplösning upplöste Webb-datan dessa områden som innehåller stjärnhopar där stjärnbildning pågår i en aldrig tidigare skådad detaljrikedom. Detaljer i datan inkluderar komponenter i hopen, såsom mycket unga protostjärnor, utflöden och jetstrålar, samt distinkta nebulosastrukturer.

Dessa Webb-observationer som kom utifrån teleskoptid som tilldelats Mike Ressler vid NASA:s Jet Propulsion Laboratory i södra Kalifornien gjorde det möjligt att studera stjärnbildning i Vintergatans yttre på samma detaljnivå som observationer av stjärnbildning i vårt eget grannskap i galaxen.

I Digel Cloud 2S finns en hop nybildade stjärnor 58000 ljusår från Vintergatans centrum galaxen här är relativt fattigt på grundämnen tyngre än väte och helium. Denna sammansättning gör att de liknar dvärggalaxer och vår egen Vintergata under dess tidiga historia. Detta var anledningen till att teamet tog tillfället i akt att använda Webb för att fånga aktiviteten som sker i fyra hopar av unga stjärnor i Digels moln 1 och 2: Områdena benämns 1A, 1B, 2N och 2S.

I Cloud 2S fångade Webb huvudhopen där som innehåller unga nybildade stjärnor. Detta molekyltäta område är ganska aktivt eftersom flera stjärnor sänder ut långsträckta jetstrålar av materia från sina poler. Dessutom upptäckte forskarna att ett underkluster kunde finnas i molnet något man även misstänkt skulle finnas här.

"Vi vet från studier av andra närliggande stjärnbildningsområden att när stjärnor bildas under sin tidiga fas börjar de sända ut jetstrålar av material från sina poler", beskriver Ressler, studiens andre författare och huvudforskare i observationsprogrammet. "Det som var fascinerande och häpnadsväckande för mig i Webb-datan är att det finns flera jetstrålar som skjuter ut i olika riktningar från denna stjärnhop. Det är lite som en fyrverkeripjäs, där man ser saker skjuta hit och dit i alla riktningar, beskriver han.

Webb-bilderna ses i skimmer över ytan av Digel-molnen och är bara en startpunkt för teamets undersökning. De har för avsikt att återbesöka denna utpost i Vintergatan för att söka svar på en mängd aktuella mysterier, ex det relativa överflödet av stjärnor med olika massor i det yttre av galaxer. Mätningen kan hjälpa astronomer att förstå hur en viss miljö kan påverka olika typer av stjärnor att bildas och hur.

– Jag är intresserad av att fortsätta studera hur stjärnbildning sker i områden som detta. Genom att kombinera data från olika observatorier och teleskop kan vi undersöka varje steg i evolutionsprocessen, beskriver Natsuko Izumi vid Gifu University och National Astronomical Observatory of Japan, som var huvudförfattare till studien. – Vi planerar också att undersöka cirkumstellära skivor (skivor av gas och stoft runt stjärnor där planeter bildas.) i det yttre av Vintergatan. Vi vet fortfarande inte varför deras livstid är kortare än i stjärnbildningsområden som ligger närmare oss och centrum av galaxen. Och naturligtvis skulle jag vilja förstå kinematiken hos de jetstrålar som vi upptäckte i Cloud 2S.

Studien har publicerats i tidskriften Astronomical Journal.

Observationerna gjordes som en del i programmet  Guaranteed Time Observation program 1237 .