Google

Translate blog

torsdag 31 mars 2022

Expansionssprickor i månen Enceladus istäcke öppnar gejsrar

 


Enceladus är en av Saturnus månar och har en diameter av cirka 500 kilometer vilket motsvarar en knapp sjättedel av vår månes diameter. År 2006 registrerade Cassini-rymdfarkosten gejsrar som steg upp ur sprickor i isen nära sydpolen på Enceladus. En del så kraftiga som utkast av 200 kilo vatten per sekund.

I en ny studie föreslås nu hur detta kan ske i form av expanderande is som under tusenåriga kylcykler ibland knäcker månens isiga yta och då under hårt vattentryck sprutar ut vatten i form av gejsrar. Månens yta är täckt av ett islager av ca 20-30 kilometers tjocklek. Temperaturen på ytan är ca -201 Celsius.  Ett decennium av data från NASA:s Cassini-Huygens -uppdrag gav bevis på att det finns ett flytande hav inunder det isiga skalet och att det därifrån genom ökat vattentryck uppstod tillfälliga sprickor i isen i form av gejsrar.

"Det fängslade både forskarnas och allmänhetens uppmärksamhet", säger Max Rudolph, biträdande professor i geofysik vid University of California, Davis och huvudförfattare till den nya studien som beskrivit detta fenomen. Studien publicerades i Geophysical Research Letters.

Rudolph och hans kollegor använde en fysikbaserad modell för att kartlägga de förhållanden som kunde tillåta sprickornas uppkomst till ytan från havet därunder och orsaka gejserutbrotten. Modellen arbetade utefter cykler av uppvärmning och kylning under en tidsrymd i en skala av hundra miljoner år och ha ett samband med förändringar i Enceladus omloppsbana runt Saturnus.

Under varje cykel genomgår isens yta en upptiningsperiod och en period av förtjockning av isen. Förtjockningen sker genom frysning vid isens yta ner mot botten en naturlig isfrysning som växer nedåt likt is på en sjö på jorden gör vintertid, säger Rudolph.

Trycket från denna nedåt expanderande is av havet är en möjlig mekanism som forskare föreslår som förklaringen till Enceladus gejsrar. När den yttre isens yta fryser och isen ökar i tjocklek ökar trycket på havet under isen genom att is har större volym än vatten. Det då ökande trycket på vattnet skapar då rörlighet i isen då vattnets expansion och tryck gör att vattnet söker vägar  i sin expansion att hitta någonstans att ta vägen och då söker efter eller bildar sprickor i svagare is och då når ytan 20-30 kilometer ovan. En trolig förklaring av gejsrarna på denna måne.

Men samma förklaring kan inte förklara gejserutbrott på Jupiters måne Europa vilken likt Enceladus är en annan isig månvärld ungefär lika stor som jordens egen måne.

Denna mekanism för havstryck och spontant utbrott kan inte förklara det som sker på månen Europa, säger Rudolph. Ytterligare forskning och observation på månen behövs för att fastställa de potentiella orsakerna till månen Europas utbrott. Rudolph ser fram emot Europa Clipper - uppdraget, rymdfarkosten som för närvarande monteras av NASA för att lära mer om de geologiska processerna på månen Europa.

Bild från vikipedia på Saturnus måne Enceladus. Belägg för en underjordisk ocean av flytande vatten på Enceladus rapporterades den 3 april 2014. Bilden är en konstnärlig tolkning av hur det kan se ut där.

onsdag 30 mars 2022

Kan asteroiden Ryugu vara ett fragment av en komet.

 


62173 Ryugu är en Jordnära asteroid som upptäcktes den 10 maj 1999. Den 27 juni 2018 gick den japanska rymdsonden Hayabusa 2 in i omloppsbana runt asteroiden. I oktober 2018 släppte Hayabusa 2 ner en liten robot, Mascot på Ryugus yta med uppdraget att under 19 timmar kartlägga och fotografera Ryugu. Asteroiden visades bestå av samma typ av stenar som fanns i den solnebulosa som vårt planetsystem bildades ur för nästan 4,6 miljarder år sen. Sten i form av millimeterstora droppformade kulor vilket tyder på att bergarten inte har varit utsatt för en kraftig omvandling i rymden vilket i sin tur innebär att det är en väldigt primitiv typ av sten. Asteroiden har bergarter betydligt äldre än de som finns på jorden.

Asteroiden består av små stenföremål och stabila material som klumpats ihop av gravitationen och nu kan ses som ett enda monolitiskt stenblock. Ryugu en snurrande hög av sten förmodligen orsakat av deformation inducerad av den snabba rotationen. Ryugu kan ses bestå av anmärkningsvärt mycket naturmaterial (små stenar).

Av dessa tre påståenden är den tredje egenskapen en fråga om asteroidens ursprung. Den nuvarande vetenskapliga konsensusen är att Ryugu härstammar från de partiklar som lämnades kvar efter en kollision mellan två större asteroider. Detta verkar fel om asteroiden har överdrivet mycket naturligt innehållsmaterial (material av samma stenstorlek).

I ett aktuellt försök att svara på denna fråga föreslogs av personal som analyserade den data man har under ledning av affiliateprofessor Hitoshi Miura vid Nagoya Metropolis College, Japan, en alternativ rationalisering som backas upp av en jämförelsevis enkel teori. Enligt definitionen i deras uppsats som beskrevs i The Astrophysical Journal Letters, diskuterar forskarna om Ryugu likt jämförbara asteroider av stenspillror, i själva verket kan vara rester av utdöda kometer. Undersökningen genomfördes i samarbete med professor Eizo Nakamura och affiliateprofessor Tak Kunihiro från Okayama College, Japan.

Kometer är små och består främst av vattenis med några steniga delar (partiklar) i isen. Om en komet kommer in i det inre fotovolaiska systemet (närmande till solen)  kommer  isen att sublimera och försvinna och  steniga partiklar som komprimerats genom gravitation att finnas kvar och objektet ses som en asteroid. Detta kan man se har skett med asteroiden Leonard. Jag hade ett inlägg om asteroiden Leonard den 28 mars.

Dr. Miura förklarar, "Sublimering av is orsakar att kärnan i kometen förlorar massa och krymper vilket ökar dess rotationshastighet. På grund av denna spin-up kan kometkärnan få den rotationshastighet som krävs för bildandet av en spinnande toppform. Dessutom tros de isiga delarna av kometer innehålla naturlig materia som genereras inom det interstellära mediet. Dessa naturliga förnödenheter kan deponeras på de steniga partiklarna som lämnas kvar eftersom isen sublimerar."

Allmänt innebär denna undersökning att snurrande toppformade, spillhögobjekt med överdrivet naturligt innehållsmaterial, som liknar Ryugu och Bennus (målet för OSIRIS-Rex-uppdraget) är komet-asteroidövergångsobjekt (CAT). "CATs är små objekt som har varit kometer men har börjat sönderbrytas och då till synes blir oskiljbara från asteroider", förklarar Dr. Miura.

Bild vikipedia på kometen.

tisdag 29 mars 2022

Detta är asteroiden Apophis som 2029 kommer att närma oss

 


Asteroiden Apophis upptäcktes 2004 och är en (NEO) en aten-asteroid (jordnära asteroid) med en diameter av 370 meter. 

Den följer en bana som får den att korsa jordens bana två gånger för varje varv av sin omloppstid på 323 dagar runt solen och därvid regelbundet riskera att passera mycket nära jorden. Nästa gång den kommer i jordens närhet blir fredagen den 13 april 2029 då avståndet kommer att vara cirka 30000 km innebärande en tiondel av avståndet mellan jorden och månen. Vid senare passager ex 2036 finns en liten risk för att Apophis träffar jorden.

Studien, där Universidad Carlos III de Madrid (UC3M) och Universidad Estatal Paulista Júlio de Mesquita Filho (Júlio de Mesquita Filho Paulista State University) (UNESP) i Brasilien ingår, visar hur man analyserat ytan och dynamiken hos Apophis med de data man har tillgängliga och utarbetat skilda händelseförlopp vid ett närmande av asteroiden till jorden. Asteroiden upptäcktes 2004 och har sedan dess övervakats på grund av dess klassificering som en potentiellt farlig asteroid i framtiden då det uppskattas att den skulle ha en 2 % chans att träffa jorden 2029.

Denna fara har dock uteslutits och enligt de senaste mätningarna kommer Apophis att nå sitt  närmaste avstånd till jorden (38000 kilometer) den 13 april 2029.


I studien analyserades de fysiska egenskaperna och de möjliga effekter som dess närhet till jorden kan ge. Gabriel Borderes-Motta, forskare vid UC3M:s avdelning för bioengineering och flygteknik, säger att "kollision inte är den enda möjligheten att närma sig händelser som denna. Gravitationsinteraktionen mellan en planet och en kropp på ett visst anstånd som Apophis kommer till jorden kan ändra dess form, bryta den i bitar, sönderdela eventuellt lösa stenar på asteroidens yta eller till och med ta bort andra kroppar som kretsar runt asteroiden (såsom stenar, satelliter eller ringar).

Teamet hoppas att asteroidens närmande till jorden 2029 ska bli en möjlighet att förbättra 3D-modeller som används för att köra rymdsimuleringar, samt att mer exakt undersöka och förutsäga effekterna på Apophis yta. Det skulle innebära en ökad kunskap om asteroider vilket skulle göra det möjligt för oss att vara bättre förberedda om nya himlakroppar passerar nära oss. För mer information över de teorier man arbetar utefter se medföljande länk här

Bild vikipedia Asteroid Apophis – närmast inflygning till jorden den 13 april 2029. De turkosa prickarna är satelliter.

måndag 28 mars 2022

Kometen Leonard sönderbröts

 


C/2021 A1 (Leonard) var en komet som upptäcktes av G. J. Leonard vid Mount Lemmon Observatory den 3 januari 2021 ett år före perihelion (dess närmsta punkt till solen i sin bana). Kärnan är (var) ca 1 km i diameter.

Den blev känd som den ljusstarkaste komet som upplösts de senaste året. 

Kometen började upplösas då den passerade som närmst solen den 3 januari 2022 och resterna rör sig nu bort från solen. Dess sken har inte bara bleknat utan nu saknas även de två viktigaste delarna dess kärna (kärna) och dess koma (tillfälliga atmosfär).

Resterna av Comet C/2021 A1 (Leonard) syns för närvarande på morgonhimlen sett från jordens från södra halvklotet. När Comet Leonard närmade sig perihelion den 3 januari 2022 började ljusstyrkan fluktuera i en tidsföljd av  var tredje till femte dag. Kometens svans började visa en komplicerad struktur troligen på grund av att bitar bröts loss av kärnan och nya områden av kometen då värmdes upp av solen.

Astronomer övervakade kometens bleknande. Det mest sannolika scenariot är att kometens kärna vilken var ca, 6 km antingen bröts upp, avdunstade bort eller en kombination av både ock. Kometer kan ses som smutsiga snöbollar men inte likvärdiga på grund av skilda innehåll av damm. Vissa kometer är tätt packade (har högre densitet än andra). Andra är fluffiga och en del innehåller även större  sten.

Leonards upptäckare sa: Den kommer att bli känd för svansens utseende, några av de bästa svansutseenden som någonsin observerats.

Fler forskare kommer att studera och slutföra forskningen och skriva artiklar om  komet Leonard. Vi kommer att få några men inte alla svar vi söker om objektet och dess väg mot sönderfall.

Bild vikipedia på C/2021 A1 (Leonard) den 28 december 2021

söndag 27 mars 2022

Nu är man säker på var is finns på Merkurius poler.

 


Merkurius (symbol: ) är den innersta och minsta planeten i vårt solsystem med en omloppstid runt solen av ungefär 88 dygn. På grund av sin närhet till solen är den svår att observera från jorden och kan bara ses i gryningen eller skymningen för blotta ögat eller med en fältkikare.

Även om Arecibo radioteleskop inte finns längre fortsätter det att leverera vetenskapliga upptäckter. Det finns en mängd Arecibo-data astronomer nu analyser i sökande efter nya upptäckter och en av teknikerna som används kallas planetradar. 

 

 Radarastronomin har efterhand blivit alltmer kraftfull. Under de senaste decennierna har planetradarmetoden använts inte bara för att kartlägga en planets yta utan också för att identifiera ytans sammansättning. På 1990-talet användes planetradar för att kartlägga ytan på Merkurius och fann överraskande fickor av is nära planetens poler. Men radarkartorna då var inte tillräckligt exakta för att avgöra exakt var isen fanns på polerna. Astronomerna misstänkte att den borde vara dold i polarkratrarnas skuggade områden dit solljus aldrig når.

Ytterligare studier under 2012 bekräftade förekomsten av is i kratrar. 2019 sände Arecibo en kraftfull radiosignal mot Merkurius. Den spridda signal mottogs efter dess reflektion på planeten  av Arecibo-mottagaren, vilket gjorde det möjligt för astronomer att utarbeta en mer detaljerad radiokarta över Merkurius inklusive polarområdena och dess fickor av som man nu kunde bekräfta innehöll is. I den senaste studien kombinerades dessa data med data från rymdfarkosten Messengers insamlade data då denna kretsade kring Merkurius mellan 2011 till 2015.

Messenger använde laserkartläggning för att urskilja ljusa områden från mörkare regolitregioner. Regolit är ett lager av lös jord som ligger ovan berggrunden. Regoliten på jorden består dels av berggrund som vittrat men även av avlagringar och jordmåner. Genom att kombinera datan kunde teamet  tolka data från radarkartan mer exakt. Även om is vanligtvis reflekterar mer radioljus än regolit vilket gör att isiga regioner ser ljusa ut på en radarkarta kan regioner också verka ljusa av andra skäl till exempel från en yta vinklad i viss riktning. Teamet kunde bekräfta att de radioljusa regionerna på polerna på  Merkurius i allmänhet indikerade på is. De kunde till och med få grepp om renheten i dessa fickor av is.

Bild från vikipedia på Merkurius. Bild tagen av rymdsonden Messinger under 2008 eller 2009. Animation gjord av bilder från MESSENGER och färglagd för att förstärka skillnader i ytans kemiska, mineralogiska och fysiska struktur.

lördag 26 mars 2022

Mystiska radiostrålscirklar i universum

 



Inom astronomin är en udda radiocirkel (ORC) ett stort, mystiskt astronomiskt objekt som sänder radiovågor är nästan cirkulärt och ljust längs kanterna.

2019 såg astronomen Anna Kapinska igenom data från CSIRO:s Australian Square Kilometre Array Pathfinder för att leta efter ovanligheter som radioteleskopet kan ha upptäckt. Hon började samla ihop en lista och gjorde en inventering av kosmiska underligheter ex ovanliga objekt och upptäckte en svag, spöklik cirkel ungefär en miljard ljusår från jorden. Några dagar senare undersökte en annan astronom, Emil Lenc, igenom samma data - och hittade då en andra cirkel. Forskarna namngav dessa objekt " udda radiocirklar" eller ORCs.

Lenc flaggade sitt fynd tillsammans med Ray Norris, en astrofysiker vid Australiens högsta vetenskapliga organ, CSIRO, och Western Sydney University, och lade upp bilden av ORC på sin datorskärm. Den såg ut som resterna av en supernova. Den struktur som finns kvar när en stjärna exploderat men data passade inte in i detta.

 

– Ganska snabbt insåg vi att det här var något helt annat, säger Norris. "Något helt nytt." Det som gör dem intressanta är det faktum att de bara är synliga för radioteleskop. Cirklarna ses inte i röntgenteleskop som NASA:s Chandra, eller i infraröda våglängder som de som undersöks av James Webb.

Sedan dess har forskarna hittat och beskrivit fem olika ORC:s alla vid liknande regioner av rymden. ORC1 som först upptäcktes av Lenc är huvudämnet i en ny artikel, som snart publiceras (kanske redan gjorts) i tidskriften Monthly Notices of the Royal Astronomical Society. Här beskrivs att vid den senaste studien användes MeerKAT som drivs av South African Radio Astronomy Observatory, för att undersöka fysiken i ringen.

Teleskopmatrisen i MeerKAT består av 64 antenner som lyssnar efter radiosignaler från rymden kan fokusera på ORC1 med mycket större detaljskärpa än vad ASKAP kunde.

Det gör det möjligt för forskarna att bestämma polarisering, vilket är viktigt för att förstå fenomenets magnetfält. Men ännu har dessa teleskops arbeten inte löst mysteriet med dessa fenomens existens. Varför de finns, vad de är och varför?

Norris har dock en personlig favoritförklaring. Han tror att ORC:s är chockvågor efter sammanslagning av supermassiva svarta hål i en extremt avlägsen galax. Radiocirkeln är en expanderande gasbubbla som interagerar och exciterar elektroner vid dess gräns och då skapas de svaga signaler som ses av teleskop på jorden. Om denna monolitiska kollision utlöste en ORC skulle vi förvänta oss att se supermassiva svarta hål i deras centrum. – Och det gör vi, säger Norris. Faktum är att av de fem ORC;s som beskrivits hittills har tre svarta hål i mitten. (så sökning bör göras mycket noga i de övriga två efter ett svart hål. Om dessa finns kan ovan vara en förklaring (min anm.).

En annan teori är att ORC;s skapas ur en "sjärnbildningschock.". För en tid sedan upplevde den centrala galaxen i ORC1 en period av enorm stjärnbildningstakt och exploderande aktivitet. – När alla dessa stjärnor bildas i mångfald får man ett stort övertryck av gas i galaxen och det sker en explosion, säger Norris. Detta, säger Norris kan orsaka en radiostrålcirkel som liknar de som observerats av ASKAP och MeerKAT. Men än så länge förklarar inget av scenarierna säkert vad  en ORC  är - de kan vara något helt annat. Av de fem ORCs som hittills upptäckts verkar ORC2 och ORC3 vara lite annorlunda. De finns nära varandra och kan ha ett samband.

Mysteriet är inte löst men jag tror första alternativet är rätt tolkning under förutsättning av att man finner svarta hål i de två där dessa fattas (min anm.)

Bild vikipedia på Australien Square Kilometre Array Pathfinder (ASKAP) radioteleskopmatris.

fredag 25 mars 2022

Ett moln av skräp i universum

 


De flesta planeter och månar i vårt solsystem  formades genom kollisioner av materia tidigt under solsystemets historia. Genom att slås ihop kan steniga kroppar ackumulera mer material öka i storlek eller brytas isär till bitar.

Astronomer har använt data från NASA:s numera pensionerade rymdteleskop Spitzer för att finna bevis i dess insamlade datamängd av kollisioner av detta slag runt unga stjärnor där planeter bildas. Observationerna gav dock inte många bevis på sammanslagningar eller storleken av material där.

I en ny studie i Astrophysical Journal rapporterar dessa  astronomer som leddes av Kate Su vid University of Arizona de första observationerna i ett skräpmoln  framför en stjärna där ljuset vid passagen då kort blockerades. Astronomer kallar det för en transitering.

Tillsammans med kunskap om stjärnans storlek och ljusstyrka gjordes observationerna det möjligt för forskarna att bestämma molnets storlek kort efter kollisioner och uppskatta storleken på de objekt som kolliderade och hur snabbt molnet skingrades.

Det var  2015 ett team lett av Su de började göra rutinmässiga observationer av en 10 miljoner år gammal stjärna som heter HD 166191. 

 Runt stjärnan har damm som blivit över vid dess bildande klumpat ihop sig och bildat sten i skilda storlekar vilka kan bli början till framtida planeter. Då gasen som tidigare fyllde utrymmet mellan dessa objekt har skingrats ses kollisioner mellan stenar lättare och blir vanligare. I sökandet efter bevis på någon kollision runt HD 166191 använde teamet data från Spitzer för att genomföra mer än 100 observationer under 2015 och 2019.

Spitzer sökte i det infraröda vågfältet som är något längre än vad mänskliga ögon kan se. Infrarött är idealisk för att upptäcka damm inklusive skräp som skapas vid protoplanetkollisioner.

I mitten av 2018 upptäckte Spitzer att HD 166191-systemet blev betydligt ljusare vilket tydde på en ökning av skräpproduktion. Under den tiden upptäckte Spitzer då ett skräpmoln som blockerade stjärnans ljus. Genom att kombinera Spitzers observation av transiteringen med observationer av teleskop på marken kunde teamet härleda storleken och formen av skräpmolnet.

Molnet upptäcktes vara långsträckt och täckte ett uppskattat område minst tre gånger större än stjärnan. Mängden infrarött ljus från det tyder dock på att endast en liten del av molnet passerade framför stjärnan och att skräpet täckte ett område hundratals gånger större än stjärnans (i uttunnad form).

För att konstruera ett så stort moln måste objekten vid huvudkollisionen ha varit lika stora som dvärgplaneter som ex Vesta i vårt solsystem – ett objekt som är 530 kilometer i diameter och som finns i asteroidbältet mellan Mars och Jupiter.

Den första sammandrabbningen genererade tillräckligt med energi och värme för att förånga in en del av materialet. Det utlöste också en kedjereaktion av stötar mellan fragment från den första kollisionen och andra mindre kroppar i systemet vilket sannolikt skapade dammolnet.

Under de närmaste månaderna växte dammolnet i storlek uttunnades och blev mer genomskinligt vilket indikerar att damm och annat skräp snabbt spred sig över hela stjärnsystemet. 2019 var molnet som passerade framför stjärnan inte längre synligt men systemet innehöll dubbelt så mycket damm som det hade tidigare. Denna upptäckt kan enligt studiens författare hjälpa forskare att testa teorier om hur planeter som jorden bildas och växt till i storlek.

"Genom att se på dammiga skräpskivor runt unga stjärnor kan vi se tillbaka i tiden och de processer som kan ha format vårt eget solsystem", säger Su. "När vi lär oss mer om resultatet av kollisioner i dessa system kan vi också få en bättre uppfattning om hur ofta steniga planeter bildas runt stjärnor."

Bild vikipedia på Spitzerteleskopet som fann molnet. Spitzerteleskopet  tidigare Space Infrared Telescope Facility (SIRTF)) söker över rymden i det infraröda sökfältet,  Det  sköts upp 2003, det fjärde och sista av NASA:s Stora Observatorier. År 2009 tog tillförseln av flytande helium slut, och sedan dess är teleskopet inte lika nedkylt och kan inte fotografera de längsta våglängderna.

torsdag 24 mars 2022

Sju bra platser att söka efter liv på i vårt solsystem

 


Om mänskligheten någonsin ska hitta liv på en annan planet i solsystemet är det förmodligen bäst att veta var man ska leta. Många forskare har ägnat många, många timmar åt att fundera över just den frågan och många har kommit med motiverin för att stödja en viss plats i solsystemet som den mest sannolika att ha potential att hysa liv som vi känner det. Men platserna skiftar och har skiftat.

 Nu har ett team lett av Dimitra Atri från NYU Abu Dhabi utarbetat en metod för att rangordna de intressanta platserna att söka på. Metoden, som publicerades i ett nytt preprintpapper i arXiv, är inriktad på en ny variabel - Microbial Habitability Index (MHI). MHI är tänkt att mäta hur livsmöjlig en specifik miljö är för de olika typer av extremofiler som finns på extrema platser här på jorden.  (Organismer som utmärker sig på så sätt att de lever eller överlever under extrema livsförhållanden som är skadliga för de flesta liv på jorden (min anm.).

De platser som r togs fram som möjligast för liv är Mars, Europa, Enceladus, Titan, Ganymedes, Callisto och Pluto.

Mars forskare har visat att Mars har ett något jordliknande klimat med 120 000 års mellanrum och då rinnande vatten. Detta beror på att Mars axel tidvis lutar mycket kraftigt och stora mängder is då smälter vid polerna. Att liv kan finnas här i någon form eller ha funnits är inte omöjligt.

Europa är Jupiters fjärde största måne. Den tycks vara täckt av is, vilket skulle förklara varför den nästan helt ses sakna kratrar. Under istäcket tror man att ett det finns vatten (och kratrar). Ett hav av framför allt vatten.

Enceladus är en av Saturnus månar. Här finns bergsklyftor, slätter, veckad terräng och andra deformationer av ytan som pekar på att månen fortfarande kan ha ett flytande innandöme. Nytagna bilder visar formationer som är slående lika de i Europas yta och det kan tyda på att månen har stora hav under den frusna ytan.

Titan är Saturnus största måne och den näst största månen i solsystemet och i storlek större än planeten Merkurius dock har Titan lägre densitet. Den består till hälften av fruset vatten och till hälften av olika bergarter. Månen är förmodligen uppdelad i flera lager med en 3400 kilometer tjock kärna av bergarter som omges av flera lager bestående av olika former av iskristaller. Titans inre kan fortfarande vara varmt. Titan är den enda kända månen med en fullt utvecklad atmosfär som består av annat än spårgaser Titans atmosfär är tätare än jordens med ett tryck vid ytan som är mer än en och en halv gånger högre. Atmosfären består till 98,4 % av kväve – den enda kväverika atmosfären i solsystemet förutom jordens – de resterande 1,6 % består av metan med endast spår av andra gaser som kolväten, argon, koldioxid, kolmonoxid, vätecyanid och helium. Här finns sjöar bestående av etan och metan. Sjöarna uppskattas vara upp till 200 meter djupa.

Ganymedes är den största av Jupiters många månar och den största månen i hela solsystemet. Ganymedes densitet är  1,936 g/cm3 vilket tyder på att den består av sten och vatten (främst i form av is). Ganymedes är den enda månen i solsystemet som är känd för att ha en magnetosfär.

Callisto är den åttonde i storlek av Jupiters kända månar och den näst största endast något mindre än Merkurius. Callisto består till ungefär 40 % av is och 60 % av sten och järn. Callisto består av ungefär lika stora mängder berg och is. Dess densitet är ca 1,83 g/cm3 vilket är den lägsta densiteten och ytgravitationen hos Jupiters större månar. Här finns vattenis, koldioxid, silikater och organiska föreningar. Analys av mätningar och bilder från Galileo-rymdfarkosten som besökte månen 2001 visade att Callisto kan ha en liten silikatkärna och eventuellt ett underjordiskt hav av vatten på ett djup större än 100 km under ytan.

Pluto är en dvärgplanet i Kuiperbältet tidigare benämnd planet. Det är möjligt att en uppvärmning i dess inre existerar som misstänks ske genom radioaktivitet och därigenom kan ett underjordiskt hav av vatten finnas på ett djup av100 till 180 km under ytan.

Bild från vikimedia på så kallade extremofiler. Här visas hypertermofila organismer färgar en varm källa i Yellowstone nationalpark i bjärta färger.

onsdag 23 mars 2022

Asteroiden 2022 EB5 överraskade jorden den 11 mars

 


Apollo-asteroiderna kallas en kategori av jordnära asteroider. En av dessa träffade jordens atmosfär över Norska havet innan den upplöstes i här  den 11 mars 2022. Den kom oupptäckt och tidigare okänd som en överraskning från ovan. Astronomer förstod dock att den var på kollisionskurs och förutsåg exakt var och när kollisionen skulle inträffa. Men enbart två timmar innan den upptäcktes och därefter slog ner.

Detta rapporterade K. Sarneczky vid Piszkéstető-observatoriet i norra Ungern där man först observerade objektet vid Minor Planet Center – det internationellt erkända clearinghuset för positionsmätningar av små himlakroppar. Objektets bana och nedslag publicerades på Minor Planet Centers hemsida 

NASA:s "Scout" konsekvensbedömningssystem var först med dessa  tidiga mätningar och beräknade banan för 2022 EB5. Så snart Scout visat att 2022 EB5 skulle träffa jordens atmosfär, larmade systemet Center for Near Earth Object Studies (CNEOS)  och NASA: s Planetary Defense Coordination Office och flaggade därefter objektet på Scouts. Scout underhålls av CNEOS vid NASA:s Jet Propulsion Laboratory i södra Kalifornien och söker automatiskt igenom Minor Planet Centers databas efter asteroider på kollisionskurs med jorden. CNEOS beräknar varje känd jordnära asteroidbana för att förbättra konsekvensbedömningar till stöd för Planetary Defense Coordination Office.

 

"Små asteroider likt 2022 EB5 finns i stort antal och de träffar atmosfären ganska ofta – ungefär en gång var tionde månad", säger Paul Chodas, chef för CNEOS på JPL. "Men väldigt få av dessa asteroider har faktiskt upptäckts i rymden och observerats före nedslaget då de är små och fram till de sista timmarna innan nedslag och ett teleskop måste observera precis rätt plats av himmel vid rätt tidpunkt för att de ska upptäckas." Just denna var enbart ca 2 meter i diameter (min anm.)

En större asteroid med risk för kollisionspotential skulle upptäckas mycket tidigare och längre från jorden. NASA:s mål är att hålla reda på sådana asteroider och att beräkna deras banor för att helst få års varsel före en potentiell kollision.

2022 EB5 är den femte lilla asteroiden som upptäcks i rymden innan den nådde jordens atmosfär. Den första asteroiden som upptäcktes och spårades långt innan den träffade jorden var 2008 TC3, som gick in i atmosfären över Sudan och bröts upp i oktober 2008. Den 4 meter breda asteroiden spred hundratals små meteoriter över den nubiska öknen. När undersökningar blir mer sofistikerade och känsliga kommer fler av dessa ofarliga föremål att upptäckas innan de kommer in i atmosfären.

Bild vikipedia på Apolloasteroiden 2022 EB5  (visas grön). Solen är i centrum, med planeterna Merkurius (grå), Venus (svart), jorden (blå), och Mars (röd).

tisdag 22 mars 2022

Misstaget uppdagades tre exoplaneter var stjärnor

 


De första världarna bortom vårt solsystem upptäcktes för tre decennier sedan. Sedan dess har nästan 5 000 exoplaneter bekräftats i vår galax. Astronomer har utöver det upptäckt ytterligare ca 5 000 planetariska kandidater – objekt som kan vara planeter men ännu inte har bekräftats som detta. Listan över planeter har nu krympt med minst tre. 

I en studie som publicerats i Astronomical Journal rapporterar MIT-astronomer  att tre, potentiellt fyra planeter som ursprungligen upptäckts av NASA: s Kepler rymdteleskop är felklassificerade. Istället är dessa sannolikt små stjärnor. Teamet använde uppdaterade mätningar för att dubbelkontrollera det som man trodde  planeternas storlek och upptäckte då att tre av dessa är  för stora för att vara planeter. Med nya och bättre uppskattningar av stjärnegenskaper fann forskarna då att de tre objekten, kända som Kepler-854b , Kepler-840b  och Kepler-699b uppskattas vara mellan två och fyra gånger större än Jupiter.

"De flesta exoplaneter är av Jupiter-storlek eller mindre. Två gånger [storleken] Jupiter är redan misstänkt. Större än så kan inte vara en planet har vi tidigare konstaterat säger studiens huvudförfattare Prajwal Niraula, graduate student in MIT's Department of Earth, Atmospheric, and Planetary Sciences. 

En fjärde planet, Kepler-747b  är ungefär 1,8 gånger Jupiters storlek vilket kan jämföras med de allra största bekräftade planeterna. Kepler-747b planetariska status, avslutar teamet, är misstänkt men inte helt osannolik. Arbetet med att hitta fler exoplaneter som bör vara stjärnor fortsätter.


Bild vikipedia på Keplerteleskopet som togs ur bruk 2018 efter att bränslet tagit slut efter 9 år av exoplanetsökande.

måndag 21 mars 2022

Ett halo i Fornaxklustret av galaxer

 


Fornaxhopen är en galaxhop i stjärnbilden Ugnen. Dess centrum befinner sig 65 miljoner ljusår från jorden. Här finns Fornaxgalaxen en elliptisk dvärggalax. Nyligen har ett team av astronomer ledda av Yanbin Yang vid Parisobservatoriet i Frankrike undersökt Fornaxgalaxens stjärnstruktur över ett relativt stort område (400 kvadratgrader). Detta gjordes från Gaia-insamlingen från ESA (stjärnkartor) vilkas datakvalitet möjliggjorde full täckning av och korrekta rörelsemätningar. Huvudsyftet med studien var att utforska omfattningen av den röda jättegrenen (RGB) stjärnpopulationen i denna galax.

 

"I denna studie presenterar vi en fallstudie om Fornax, med Gaia EDR3 [Early Data Release] publicerad i december 2020. Tack vare dess homogena täckning och datakvalitet kan vi utforska data över ett mycket stort område. Både täckning och kalibreringar över stora fält är svårigheter för markbaserade observationer och mosaikliknande observationer på dSphs," förklarade forskarna.

Studien identifierade en brytning i densitetsprofilen för Fornax vilket avslöjade en betydande komponent i denna galax som liknar ett stjärnhalo på grund av dess nästan symmetriska morfologi. Den sträcker sig utåt till 17600 ljusår och dess massa uppskattas till cirka 10 procent av galaxens massa. Något som ger indikationer på att Fornax-galaxen kan sträcka sig ännu längre ut i universum.

Astronomerna antar att den förlängda stjärnhallon kan bero på en tidigare stor expansionstakt av stjärnor i Fornax. Detaljerad numerisk modellering kommer dock att krävas för att bekräfta denna hypotes. Forskarna tillade att ett sådant scenario förutsätter att Vintergatans halo är eller var fyllt av diffus och joniserad gas i det som kallas det cirkumgalaktiska mediet (CGM) historiskt. Något som inte bevistats.

Forskarna noterade att deras upptäckt kan få konsekvenser för vår förståelse av andra dvärggalaxer av liknande slag i Vintergatan.

Bild vikipedia. VLT (Very Large Telescop ESA teleskop i Chile) Undersökning teleskopbild av Fornax Galaxkluster.

söndag 20 mars 2022

Comet 67P visar på förekomsten av syre.

 


67P/Churyumov-Gerasimenko är en komet i vårt solsystem. På denna landade den 12 november 2014 den obemannade ESA-rymdsonden Rosettas landare Philae och blev därmed det första människoskapade föremål som landat på en komet.

Rosetta upptäckte rikligt med molekylärt syre som läckte ut från kometen vilket förbryllade forskarna. Detta hade de aldrig sett ske från en komet tidigare. Konsekvenserna blev att forskare nu fick ta hänsyn till detta vilket innebar att ompröva allt de trodde att de redan visste om kemin i det tidiga solsystemet och hur det bildats.

Men en ny analys med ledning av planetforskare Adrienn Luspay-Kuti vid Johns Hopkins Applied Physics Laboratory (APL) i Laurel, Maryland, visas dock att Rosettas upptäckt kanske inte är så uppseendeväckande som forskarna först ansåg. Istället tyder upptäckten på att kometen har två inre reservoarer som får det att verka som om det finns mer syre här än vad som faktiskt finns.

"Det är en illusion", säger Luspay-Kuti. "I verkligheten har kometen inte ett högt syre-överflöd utan förklaringen är att ackumulerat syre fastnat i de övre lagren av kometen som släpps ut allt på en gång på grund av uppvärming vid närmande till solen och reaktion från vattenis. Även om det på jorden är vanligt med molekylärt syre (två syreatomer dubbelt kopplade till varandra) är det ovanligt i universum.

Molekylärt syre binder snabbt till andra atomer och molekyler och då speciellt till de universellt rikliga atomerna väte och kol. Syre förekommer endast i små mängder i några molekylära moln därute. Detta faktum fick många forskare att dra slutsatsen att syre i den protosolära nebulosa som bildade vårt solsystem troligen hade plockats upp på liknande sätt som väte och kol.

När Rosetta fann syre som steg ut ur kometen 67P vändes dock allt på huvudet. Ingen hade upptäckt syre i en komet tidigare och som den fjärde mest rikliga molekylen i kometens ljusa koma (efter vatten, koldioxid och kolmonoxid) behövde detta en förklaring. Syret tycktes lossna från kometen med hjälp av vatten vilket fick många forskare att misstänka att syret antingen var urtida - vilket innebar att det blev bundet med vatten vid solsystemets födelse och samlats i kometen när den senare bildades - eller bildats av vatten efter att kometen hade bildats.

Som rapporterats i deras studie, publicerad 10 mars i Nature Astronomy, fann teamet att när södra halvklotet vände sig bort och var tillräckligt långt från solen försvann länken mellan syre och vatten. Mängden vatten som kom från kometen sjönk så snabbt att syre verkade starkt kopplat till koldioxid och kolmonoxid, något kometen fortfarande släppte ut. Teamet föreslog då att kometens syre inte kommer från vatten utan från två reservoarer: en innehållande syre, kolmonoxid och koldioxid djupt inne i kometens steniga kärna; och en grundare ficka närmare ytan där syre kemiskt kombineras med vattenismolekyler.

Idén är: En djup reservoar av syre, kolmonoxid och koldioxidis avger ständigt gaser eftersom syre, koldioxid och kolmonoxid alla förångas vid mycket låga temperaturer. När syret passerar ur kometens inre på sin väg mot ytan tränger en del av det kemiskt in i vatten-isen (en viktig beståndsdel i kometens kärna) och bildar då en andra grundare syrereservoar. Men vattenis förångas vid en mycket högre temperatur än syre  så tills solen värmer ytan tillräckligt och förångar vattenisen kommer syret därför  ingenstans.

Det innebär  att syre kan ackumuleras i denna grunda reservoar under långa tider tills kometytan värms upp tillräckligt (när kometen kommer nära nog solen) för att vattenisen ska förångas vilket då frigör en plym som är mycket rikare av syre än vad som faktiskt fanns från början i kometen.

"Med andra ord återspeglar syreförekomsterna som mäts i kometens koma inte nödvändigtvis dess överflöd i kometens kärna", förklarade Luspay-Kuti.

Luspay-Kuti säger att hon vill undersöka ämnet djupare genom att undersöka kometens mindre molekylära innehåll av ex metan och etan och dess korrelation med molekylärt syre. Hon misstänker att detta kan  hjälpa forskare att få en bättre uppfattning om vilken typ av is som syret införlivades i.

"Du måste fortfarande komma på ett sätt att införliva syret i kometen", sa Luspay-Kuti, med tanke på att mängden syre fortfarande är högre än vad som ses i de flesta molekylära moln. Men hon sade att hon förväntade sig att en majoritet av forskarna ska välkomna studien och dess slutsatser med en lättnadens suck. 

Forskare  slipper nu omtolka universums födelse och nutid se ovan i inlägget (min anm.).Men visst behövs kompletterande analyser för att säkert veta hur syre kom in eller inte kom in i kometen.

Bild på kometen från vikipedia.

lördag 19 mars 2022

Pulsaren psr J2030+4415 med en stråle av materia och antimateria

 


Denna bild ovan från NASA:s Chandra X-ray Observatory och markbaserade optiska teleskop visar en extremt lång stråle (glödliknande tråd) av materia och antimateria av en mindre pulsar. Upptäckten publicerades nyligen på Chandras nyhetssida (se länk nedan).

Denna stråle kan kanske ge ledtrådar till att förklara det förvånansvärt stora antalet positroner, motsatsen till elektroner forskare upptäckt i Vintergatan.

Ljusstrålen till vänster på bilden visar ca en tredjedel av strålens längd som utgår från pulsaren psr J2030+4415 (J2030). Pulsaren finns cirka 1 600 ljusår från jorden och är likt objekt av detta slag av hög densitet och en storlek som en medelstor stad, Pulsaren (neutronstjärnan) bildades vid kollapsen av en massiv stjärna och just nu roterar den med flera  varv i sekunden runt sin axel.

Röntgenbilder tagna med Chandra (det blå fältet) visar hur partiklar strömmar ut från pulsaren längs med magnetfältslinjerna  i en hastighet av en tredjedel av ljushastigheten. Utifrån en närbild av pulsaren till höger i bild visas hur röntgenstrålar som skapas av partiklar sveper runt om pulsaren. Pulsaren sveper genom genom universum med en hastighet av ca 160900 km/h denna vilket får partiklar att skapa den långa glödtråden. (Optiska ljusdata från Gemini-teleskopet på Mauna Kea på Hawaii har använts vid analysen).

Man kan tillägga att som säkert flertalet redan vet att universum består till störta delen av vanlig materia inte av antimateria. Ett möte med dessa motsatser resulterar i att båda förintas.  Men likväl finner forskare  bevis för ett relativt stort antal positroner i universum, vilket leder till frågan: vilka är möjliga källor finns till denna antimateria? OBS positroner motsatsen till elektroner. Men det innebär inte antiproton antineutron vilka även behövs för en antiatoms uppbyggnad finns i lika stort antal (min anm.).

 Forskarna beskriver Chandra-studien av J2030 som att pulsarer likt denna  ger svar på varifrån positroner uppstår. Kombinationen av två ytterligheter – snabb rotation och höga magnetfält i pulsarer – leder till partikelacceleration och högenergistrålning som skapar elektron- och positronpar. (Den vanliga processen att omvandla massa till energi som bestäms av Einsteins E = mc2-ekvation är omvänd och energi omvandlas till massa.)

Pulsarer genererar rörelser av laddade partiklar som vanligtvis är begränsade inom kraftfulla magnetfält. Pulsaren färdas genom interstellära rymden i hög hastighet med strålen efter sig. En bogchock av gas rör sig framför pulsaren, liknande  vattenrörelsen framför fören på en båt i rörelse. Men för ungefär 20 till 30 år sedan verkar bogchockens rörelse från pulsaren ha avstannat och pulsaren kom ikapp den.

 

Den efterföljande kollisionen utlöste troligen en partikelläcka, där pulsarvindens magnetfält kopplades ihop sig med det interstellära magnetfältet. Som ett resultat kunde högenergielektronerna och positronerna då spruta ut genom ett "munstycke" bildat genom anslutningen till galaxen vari den ingår.

Frågan kvarstår dock över vad som skapar både elektroner och positroner (min anm.).

Bild från på en röntgenfotografering av objektet. Röntgenfotografering av objektet. https://chandra.harvard.edu/photo/2022/j2030/

fredag 18 mars 2022

Nyligen kraschade en meteorit i Australien

 


Ett team från Curtin University i Australien använde en ny metod för att söka efter nedslagna meteoriter.. Metoden innebar att med hjälp av drönare finna en nyligen nedfallen meteorit. Det var med hjälp av ett observationssystem kallat Desert Fireball Network (DFN). teamet spårade upp och hittade meteoriten efter fyra dagar. 

Den första pusselbiten för att hitta meteoriten genom  DFN utgick från en serie observatorier från obersvationer av när meteoriten kom in i jordens atmosfär. Två DFN-observatorier, ett vid Mundrabilla station och ett vid O'Malley  upptäckten av ett eldklot som kom in i jordens atmosfär syntes under 3,1 sekunder den 1 april 2021.

Tyvärr var de två observatorierna av fenomenet relativt långt bort från meteoritens nedslag (149 km respektive 471 km). Avståndet ledde till viss osäkerhet av det exakta nedfallsområdet. Men utifrån observationen kunde man likväl begränsa sökområdet till ca 5,1 km2.

Men även detta är  ett stort område att täcka upp och att använda en typisk meteoritsökningsteknik som innebär att stora grupper av frivilliga utspridda i området i sökandet inte minst är det svårt att arrangera. Därför använde gruppen vid Curtin en drönare och ett AI-algoritm i sökprocessen. De hade utvecklat och tränat en  nätverksalgoritm ett slags AI-algoritm (artificiell intelligens) för att söka efter meteoriter. Med hjälp av bilder av kända meteoriter i liknande miljöer tränades algoritmen i vad den skulle söka efter.

Därefter släpptes drönaren upp för att ta bilder som sedan matades in i algoritmen. En process som tog ungefär tre dagar för den DJI M300- drönare med kamera som användes.

Något som förenklade processen var att det vid  Outback of Western Australia finns relativt öppen terräng vilket förenklar sökandet (bildtagningen) efter meteoriter. Studien blev lyckad. Algoritmen, delade upp bilderna från drönaren i 125 x 125mm  pixelplattor och analyserades sedan dessa plattor i letandet efter potentiella meteoriter. Redan första dagen hittades meteoriten det man letade efter på en av bilderna. Så efter att ha skannat området i tre dagar med en drönare gick forskargruppen ut för att hitta meteoriten till fots. För att fokusera sin sökning koncentrerade de sig på området som algoritmen hade returnerat intresseobjektet från. Här hittade de snart den 70 gram stora  meteoriten orörd i sanden. Dessutom var stenens plats endast 50 m från den ursprungligt föreslagna flygvägen och nedslagsplatsen som beräknats av DFN: s observationsnätverk.

Se medföljande länk där en bra film medföljer som visar hur en meteorit sönderdelas i nedfärden mot jorden. Bild från samma länk som kommer från https://phys.org/news/2022-03-meteorite-australia-drone-scoured-area.html

torsdag 17 mars 2022

Hur ser en planet ut där liv finns.

 


Vi vet ännu inte om de stjärnor som finns närmast oss α Centauri A/B-binärsystemet (dubbelstjärnor) hyser en jordliknande planet 

 Men tack vare arbete med skilda datamodeller av utveckling har vi nu en god uppfattning om hur en sådan planet om den skulle existera skulle se ut och hur den skulle ha utvecklats över tid.

James Webb Space Telescope (JWST), som framgångsrikt lanserades i december 2021, beräknas inom en snar framtid kunna upptäcka atmosfärer hos steniga exoplaneter som passerar framför M-dvärgar - röda stjärnor som är svagare ljudmässigt och mindre än solen – exoplaneter som kretsar inom den beboeliga zonen runt dessa solar. Det extremt stora teleskopet (ELT) som för närvarande håller på att byggas i Chile kommer även det att söka efter steniga exoplaneter runt närliggande solliknande stjärnor i slutet av detta decennium.

På ETH Zürich är man ledande och väsentligt involverad i dessa och andra observationsinfrastrukturarbeten. Kompletterande forskning vid Institutet för partikelfysik och astrofysik vid institutionen för fysik handlar om numerisk modellering innebärande att bättre förstå beboeliga steniga exoplaneter och vägleda framtida observationer och instrumentutveckling för arbete inom detta.

Nu har ett internationellt team lett av ETH-forskare presenterat resultaten av en sådan studie där man riktade uppmärksamheten mot de solliknande stjärnorna närmast jorden, α Centauri A och α Centauri B. Rapporten publicerades i The Astrophysical Journal och ger en förutsägelse om hur en planet i jordstorlek (om den existerar)  skulle se ut. Teamet, som inkluderar ETH-astrofysikerna Haiyang Wang, Sascha Quanz och Fabian Seidler samt Paolo Sossi vid institutionen för geovetenskaper bestämde sig för att uppskatta den elementära sammansättningen av en hypotetisk stenig planet i den beboeliga zonen i α Centauri A / B-systemet.

Med detta arbete har Wang och kollegor börjat beskriva en fängslande bild av en (eventuell) exoplanet som kretsar kring α Centauri A/B. Om den finns, α-Cen-Jorden, är den sannolikt geokemiskt lik jorden förutspås det och med en mantel som domineras av silikater berikad med kolbärande inslag som grafit och diamant.

 Kapaciteten för vattenlagring i dess steniga inre bör motsvara jordens. Enligt studien skulle α-Cen-Jorden dock skilja sig på intressanta sätt från jorden. Den skulle ha en något större järnkärna, lägre geologisk aktivitet och inte tvunget plattektonik (som jorden har). Den största överraskningen var dock att den tidiga atmosfären på denna hypotetiska planet kunde ha dominerats av koldioxid, metan och vatten - liknande jordens i arkeiskaeon, för 4 till 2,5 miljarder år sedan då det första livet uppstod på jorden.

Sannolikheten finns därför att hitta ett äldre syskon till jorden. α Centauri A/B-systemet är 1,5–2 miljarder år äldre än solen. Från 2022 till 2035 kommer α Centauri A och α Centauri B att vara tillräckligt åtskilda från varandra för att förenkla sökandet efter planeter runt var och en av stjärnorna tack vare minskad ljusförorening från den andra.

 Tillsammans med den nya observationskraft som kan förväntas under de kommande åren finns det hopp om att finna en eller flera exoplaneter som kretsar kring α Centauri A/B. Planeter som kommer att ansluta sig till de nästan 5 000 exoplaneter som har upptäckts sedan 1995, då strofysiker Michel Mayor och Didier Queloz  vid universitetet i Genève  tillkännagav upptäckten av den första planeten utanför vårt solsystem i omloppsbana runt en solliknande stjärna. för vilken de tilldelades Nobelpriset i fysik 2019, delat med den kanadensisk-amerikanske kosmologen Jim Peebles.

Bild vikipedia som visar solen jämförd med Alfa Centaurisystemets stjärnor ca 4 ljusår bort.

onsdag 16 mars 2022

En metod för att lättare finna underjordiska hav på månar

 


Under 2000-talet har planet-forskare blivit alltmer säkra på att underjordiska hav bestående av flytande vatten finns på vissa månar i vårt solsystem

Då vatten är ett krav för livet på jorden ser vi oss om efter andra himlakroppar som kan innehålla hav. I vårt solsystem mestadels månar. I sådana hav kan liv finnas.

Ett primärt sätt att upptäcka existensen av ett dolt hav är genom ett inducerat magnetfält. Dessa magnetfält söks genom en unik tillämpning av Faradays induktionslag. 

 Denna lag säger att ett över tid varierat magnetfält skapar en elektrisk ström när den appliceras på en krets. Vatten som är tillräckligt salt för att förbli flytande i kalla utrymmen är  elektriskt ledande.

Samtidigt utsätts en månes bana av  planetens (vilken den snurrar runt)  roterande magnetfälts fältstyrka som varierar över tid. Denna effekt kombineras för att inducera en elektrisk spänning i havet som i sin tur genererar ett inducerat magnetfält som kommer från månen. Att observera magnetfält som är resultatet av denna process är en svår uppgift. Det inducerade fältet är mycket svagare än det magnetiska fält som genomsyrar de lokala miljöerna (från planeten månen kretsar runt).

Om en måne  har en atmosfär kan dess jonosfär generera ännu ett inducerat magnetfält vilket kan leda till falsk positiv detektering om ett underjordiskt hav. Och rymdfarkoster utrustade med en magnetometer gör mätning över en måne kommer tillgängliga data att vara ganska begränsade eller till och med obefintliga om rymdfarkosten inte passerar tillräckligt nära för att känna av ett inducerat fält.

På Cochrane et al.  presenteras nu en ny metod för att hantera dessa svårigheter baserat på prediktiv modellering och en huvudkomponentanalys. Här valdes en enda nära förbiflygning av Neptunus största måne, Triton. Metoden är utvecklad för Trident-uppdragskoncept och föreslogs från NASA: s Discovery Program.

 Denna förbiflygning skulle producera bara 12 minuter användbar data för att extrapolera förekomsten av ett underjordiskt hav.

För mer om detta arbete följ ovan länkar.

Bild vikipedia. Bildtext. Fotografi taget av rymdsonden Cassini som visar Diones mörkare baksida. Månen Dion vid Saturnus är en måne som kanske innehåller ett underjordiskt hav. 

tisdag 15 mars 2022

Det SGR 1830 en magnetar

 


En magnetar är en starkt magnetiserad stjärnkärna som inte är större än en medelstor stad. Det är en typ av isolerad neutronstjärna, den krossade kärnan som lämnats kvar när en massiv stjärna exploderat. Här har material en kompression av mer massa än solens och en sådan kärna är inte större än cirka 20 kilometer i diameter. En neutronstjärna  av materia så tät att en tesked skulle väga lika mycket som ett berg på jorden. 

Det som särskiljer magnetarer är att de konstruerar de starkaste magnetfälten som är kända upp till 10 biljoner gånger mer intensiva än en kylskåpsmagnets och tusen gånger starkare än en ordinär neutronstjärnas. Magnetfältet representerar ett enormt av energi som om det störs kan ge ett utbrott av röntgenaktivitet under en varaktighet av månader eller  år.

Magnetar SGR 1830 finns i stjärnbilden Skölden och dess avstånd från oss är ca 13000 ljusår. Swiftrymdteleskop riktades mot denna och upptäckte då upprepade pulseringar och att objektets rotationshastighet  är 10,4 sekund.

Därefter har NASA:s Neutron star Interior Composition Explorer (NICER) teleskop som finns på den internationella rymdstationen ISS observerat sammanslagningen av flermiljongraders röntgenfläckar på ytan av magnetaren.

"NICER upptäckte hur tre ljusa, röntgenemitterande heta punkter långsamt vandrade över objektets yta samtidigt som de minskade i storlek. En upptäckt som gett den bästa inblicken hittills på fenomen som dessa", säger George Younes, forskare vid George Washington University i Washington och NASA:s Goddard Space Flight Center i Greenbelt, Maryland.

"Den största punkten sammansmälte så småningom med en mindre vilket är något vi inte har sett tidigare." säger Younes.

Denna unika observation beskrevs i en artikel i i The Astrophysical Journal Letters Younes den 13 januari huvudförfattare är ovannämnde Younes. Studien kommer att hjälpa forskare till en mer fullständig förståelse av samspelet mellan ytan och magnetfältet av en magnetar.

Bild på SGR 1830 från youtube

måndag 14 mars 2022

Det finns massiva bubblor i mitten av Vintergatan

 


År 2020 tog röntgenteleskopet eRosita bilder av två enorma bubblor som sträcker sig långt över och under centrum av Vintergatan.

Sedan dess har astronomer diskuterat dess ursprung. Nu tyder en studie där bland annat forskare vid University of Michigan att bubblorna är ett resultat av en kraftfull stråle av aktivitet från det supermassiva svarta hålet i mitten av Vintergatan. Studien publicerades i Nature Astronomy och här beskrivs att denna kraftfulla stråle startade sin utstrålning av  material för cirka 2,6 miljoner år sedan och hade en varaktighet av cirka 100000 år och i dag kan ses som två bubblor. 

Teamets resultat tyder på att Fermi-bubblor vilka första gången upptäcktes 2010,ett slag av  mikrovågs dis - en dimma av laddade partiklar  i mitten av galaxen - bildades av denna stråle av energi från det svarta hålet. Studien leddes av National Tsing Hua University i samarbete med U-M och University of Wisconsin. Det finns två konkurrerande modeller som förklarar dessa bubblor, kallade Fermi- eller eRosita bubblor efter de teleskop som namngav dem, säger Ruszkowski vid University of Michigan.

 Den första modellen säger att utflödet drivs av en nukleär händelse där en stjärna exploderar som en supernova och därefter kastar ut material. Den andra modellen, som teamets resultat stöder mer antyder att dessa utflöden drivs av energi som kastas ut från det supermassiva svarta hålet i mitten av vår galax.

Detta utflöde från svarta hål uppstår när material färdas mot det svarta hålet men aldrig korsar det svarta hålets händelsehorisont från vilken ingenting kan fly. Eftersom en del av detta material kastas tillbaka ut i rymden växer det svarta hålet inte okontrollerat. Men energin som kastas från det svarta hålet förskjuter material nära det svarta hålet vilket skapar dessa bubblor.

Vad finns inuti dem? Kosmiska strålar, en form av högenergistrålning i dessa   eRosita-bubblor (Fermi-bubblor)  ännu vet ingen detta.

Bild vikimedia på fermibubblor.